www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Auflösung von Gleichungen
Auflösung von Gleichungen < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösung von Gleichungen: Rentenformel
Status: (Frage) für Interessierte Status 
Datum: 01:14 Sa 12.11.2005
Autor: homer0815

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

moin,

hänge schon seit stunden vor mathe und komme hier nicht weiter:

a) löse die "nachschüssige" Rentenformel [mm] K\times=K\circ+mR+\bruch{p t}{100} (K\circ+\bruch{m-1}{2}R) [/mm]  nach den variabeblen [mm] K\circ,R,p,m,t [/mm] auf. also 5 gleichungen.  [meine ansätze sint mal total komisch und mir zu peinlich um sie zu posten]

b) Setze [mm] t=\bruch{1}{4}m [/mm] in a) ein und löse dann nach der anzahl m der ratenperioden auf durch lösen einer quadratischen gleichung.

c) bei vorschüssiger ratenzahlung gilt  [mm] K\times=K+mR+\bruch{p t}{100} (K\circ+\bruch{m-1}{2}R) [/mm] . berechne den dazu konformen zinsfuß [mm] p\* [/mm] für nachschüssige ratenzahlungen (also den parameter [mm] p\* [/mm] in a), der für [mm] K\times [/mm] dasselbe ergebnis liefert). wrum muss [mm] p\* [/mm] größer als p sein??

[zu a habe ich nur falsche ansätze zu b und c leider nix]

DANKE FÜR EURE HILFE... ICH HABE ECHT KEINE PEILUNG IN DIESER ANGELEGENHEIT!



        
Bezug
Auflösung von Gleichungen: Keine Doppel-Postings
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:48 Sa 12.11.2005
Autor: Loddar

Hallo Homer!


Bitte keine Doppel-Postings hier innerhalb des MatheRaums einstellen.

Du hast diese Frage bereits hier gestellt.


Gruß
Loddar


Bezug
                
Bezug
Auflösung von Gleichungen: Posting
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Sa 12.11.2005
Autor: homer0815

war nen fehler... habe das uni sonstiges zu spät gesehen.... kommt nichtmehr vor!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]