Auflösen einer Gleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Auflösung der Gleichung:
[mm]\varepsilon * sin(\vartheta) - \wurzel{\varepsilon - cos^2(\vartheta)} = 0[/mm]
nach [mm]\varepsilon[/mm] |
Heyho!
Obige Gleichung bekomm ich ums verrecken nicht nach [mm]\varepsilon[/mm] aufgelöst. Irgendwie steh ich aufm Schlauch.
Hoffe mir kann jemand mit einem kurzen Lösungsweg auf die Sprünge helfen... Vielen Dank im voraus schon mal :)
Die Gleichung hat 2 Lösungen:
[mm]\varepsilon_{1} = 1[/mm]
[mm]\varepsilon_{2} = cot^2(\vartheta)[/mm]
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:14 Di 28.08.2007 | Autor: | rainerS |
Hallo,
> Auflösung der Gleichung:
> [mm]\varepsilon * sin(\vartheta) - \wurzel{\varepsilon - cos^2(\vartheta)} = 0[/mm]
> nach [mm]\varepsilon[/mm]
> Obige Gleichung bekomm ich ums verrecken nicht nach
> [mm]\varepsilon[/mm] aufgelöst. Irgendwie steh ich aufm Schlauch.
> Hoffe mir kann jemand mit einem kurzen Lösungsweg auf die
> Sprünge helfen... Vielen Dank im voraus schon mal :)
Bring mal die Wurzel auf die rechte Seite und quadriere:
[mm]\varepsilon^2*\sin^2\vartheta = \varepsilon - \cos^2\vartheta[/mm]
Jetzt hast du eine quadratische Gleichung für [mm]\varepsilon[/mm].
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:28 Di 28.08.2007 | Autor: | bliblablub |
Danke für die schnelle Antwort.
So weit war ich auch schon, hab dann mit der Mitternachtsformel das Ganze versucht zu lösen. Man hat aber dann immer noch das Problem, dass man mit Additionstheoremen, etc. umformen muss, bis man das gewünschte Ergebnis erhält und genau daran scheitert es im Moment bei mir.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:21 Mi 29.08.2007 | Autor: | Sax |
Hi,
folgende Lösung muss noch in Bezug auf Beträge, Fallunterscheidungen etc verfeinert werden, ich schreibe kurz s für [mm] $sin(\vartheta)$ [/mm] und c für [mm] $cos(\vartheta)$.
[/mm]
Dann geht's so :
$ [mm] \varepsilon^2*s^2 [/mm] = [mm] \varepsilon [/mm] - [mm] c^2 [/mm] $
$ [mm] \varepsilon [/mm] - [mm] \bruch{\varepsilon}{s^2} [/mm] + [mm] \bruch{c^2}{s^2} [/mm] = 0 $
$ [mm] \varepsilon [/mm] = [mm] \bruch{1}{2s^2}*(1\pm\wurzel{1-4s^2c^2} [/mm] $
wegen $ 1 = [mm] 1^2 [/mm] = [mm] (s^2+c^2)^2 [/mm] = [mm] s^4+2s^2c^2+c^4 [/mm] $ lässt sich das umformen zu
$ [mm] \varepsilon [/mm] = [mm] \bruch{1}{2s^2}*(1\pm\wurzel{(s^2-c^2)^2} [/mm] $
$ [mm] \varepsilon [/mm] = [mm] \bruch{1}{2s^2}*(1\pm(s^2-c^2)) [/mm] $
$ [mm] \varepsilon_1 [/mm] = [mm] \bruch{1}{2s^2}*(s^2+c^2+s^2-c^2) [/mm] = 1$
$ [mm] \varepsilon_2 [/mm] = [mm] \bruch{1}{2s^2}*(s^2+c^2-s^2+c^2) [/mm] = [mm] cot^2\vartheta [/mm] $
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:10 Mi 29.08.2007 | Autor: | rainerS |
Hallo,
die Gleichung lautet ja umgeformt
[mm]\varepsilon^2-\frac{1}{\sin^2\vartheta}\varepsilon + \frac{\cos^2\vartheta}{\sin^2\vartheta} = 0[/mm],
woraus sich als Lösungen ergeben:
[mm]\varepsilon_{1,2} = \frac{1}{2\sin^2\vartheta}\pm\sqrt{\left(\frac{1}{2\sin^2\vartheta}\right)^2 - \frac{\cos^2\vartheta}{\sin^2\vartheta}} = \frac{1}{2\sin^2\vartheta}\pm \frac{1}{2\sin^2\vartheta}\sqrt{1-4\sin^2\vartheta\cos^2\vartheta}[/mm]
Nun ist [mm]2\sin\vartheta\cos\vartheta = \sin(2\vartheta)[/mm], also
[mm]\varepsilon_{1,2} = \frac{1}{2\sin^2\vartheta}\pm \frac{1}{2\sin^2\vartheta}\sqrt{1-sin^2(2\vartheta)} = \frac{1}{2\sin^2\vartheta}\pm \frac{1}{2\sin^2\vartheta}\cos(2\vartheta) = \frac{1}{2\sin^2\vartheta}\pm \frac{1}{2\sin^2\vartheta} \left(\cos^2\vartheta-\sin^2\vartheta\right) = \frac{1}{2\sin^2\vartheta}\pm \frac{1}{2\sin^2\vartheta} \left(1-2sin^2\vartheta\right)[/mm].
Also:
[mm]\varepsilon_1 = \frac{1-sin^2\vartheta}{\sin^2\vartheta} = \cot^2\vartheta[/mm]
[mm]\varepsilon_2 = 1[/mm]
Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:20 Mi 29.08.2007 | Autor: | bliblablub |
Super! Danke für die Antwort!
|
|
|
|