www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Auflösen Betragsgleichung
Auflösen Betragsgleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen Betragsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 29.02.2012
Autor: nalis

Aufgabe
Wie kann ich folgende Gleichung nach x auflösen?

[mm] |(\bruch{243}{x}-1)\*10^5|=|(\bruch{323}{x}-1)\*10^5 [/mm]

Ich komme bei der Aufgabe einfach nicht weiter. Die Lösung für x ist 283



        
Bezug
Auflösen Betragsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mi 29.02.2012
Autor: M.Rex

Hallo


Mache folgende Fallunterscheidungen:

Fall 1:

[mm] \bruch{243}{x}-1>0\Leftrightarrow243 Damit ist auch
[mm] \bruch{323}{x}-1>0 [/mm]

Dann wird aus:

$ [mm] \left|\left(\bruch{243}{x}-1\right)*10^5\right|=\left|\left(\bruch{323}{x}-1\right)*10^5\right| [/mm] $
die Gleichung
$ [mm] +\left(\left(\bruch{243}{x}-1\right)*10^5\right)=+\left(\left(\bruch{323}{x}-1\right)*10^5\right) [/mm] $


Fall 2:
[mm] \bruch{323}{x}-1<0\Leftrightarrow323>x [/mm]
Dann ist auch
[mm] \bruch{243}{x}-1<0 [/mm]

Dann wird aus:

$ [mm] \left|\left(\bruch{243}{x}-1\right)*10^5\right|=\left|\left(\bruch{323}{x}-1\right)*10^5\right| [/mm] $
die Gleichung
$ [mm] -\left(\left(\bruch{243}{x}-1\right)*10^5\right)=-\left(\left(\bruch{323}{x}-1\right)*10^5\right) [/mm] $

Fall 3:

243<x<323
Dann wird
Dann wird aus:

$ [mm] \left|\left(\bruch{243}{x}-1\right)*10^5\right|=\left|\left(\bruch{323}{x}-1\right)*10^5\right| [/mm] $
die Gleichung
$ [mm] -\left(\left(\bruch{243}{x}-1\right)*10^5\right)=+\left(\left(\bruch{323}{x}-1\right)*10^5\right) [/mm] $

Löse diese drei Fälle, wie üblich. Beachte, dass du die Fallösungen und die Fallvoraussetzungen erfüllen musst, um die Fälle zu einer Lözung zu bringen.
Die Gesamtlösung ist dann die Vereinigung der Teilfalllösungen.

Marius


Bezug
        
Bezug
Auflösen Betragsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Mi 29.02.2012
Autor: schachuzipus

Hallo,

einfacher/schneller:

Wenn [mm]|a|=|b|[/mm], so muss [mm]a=\pm b[/mm] sein.

Hier teile erstmal die [mm]10^5[/mm] auf beiden Seiten weg, dann hast du

[mm]\left|\frac{243}{x}-1\right| \ = \ \left|\frac{323}{x}-1\right|[/mm]

Also mit der obigen Anmerkung:

[mm]\frac{243}{x}-1=\frac{323}{x}-1 \ \ \ \text{oder} \ \ \ \frac{243}{x}-1=-\left(\frac{323}{x}-1\right)[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Auflösen Betragsgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Mi 29.02.2012
Autor: nalis

erst einmal danke.

da ich dann sehe, dass [mm] \frac{243}{x}-1=\frac{323}{x}-1 [/mm] nicht lösbar ist, gilt folglich [mm] \frac{243}{x}-1=-\left(\frac{323}{x}-1\right) [/mm] und ich kann mit diesem Fall dann x berechnen .

Bezug
                        
Bezug
Auflösen Betragsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Mi 29.02.2012
Autor: M.Rex


> erst einmal danke.
>
> da ich dann sehe, dass [mm] \frac{243}{x}-1=\frac{323}{x}-1[/mm]
> nicht lösbar ist, gilt folglich
> [mm]\frac{243}{x}-1=-\left(\frac{323}{x}-1\right)[/mm] und ich kann
> mit diesem Fall dann x berechnen .

So ist es.

Marius




Bezug
        
Bezug
Auflösen Betragsgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 29.02.2012
Autor: fred97

Wenn man in

$ [mm] |(\bruch{243}{x}-1)*10^5|=|(\bruch{323}{x}-1)*10^5| [/mm] $

Durch [mm] 10^5 [/mm] teilt und mit x durchmultipliziert, erhält man eine Gleichung der Form

                      |a-x|=|b-x| mit a [mm] \ne [/mm] b.

Nun ist

            $ |a-x|=|b-x|   [mm] ~~\gdw [/mm] ~~ [mm] a^2-2ax+x^2=b^2-2bx+x^2 ~~\gdw [/mm] ~~ x= [mm] \bruch{a+b}{2}$ [/mm]

Was steckt da wohl geometrisch dahinter ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]