www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Auflösen
Auflösen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 18.05.2011
Autor: Ice-Man

Hallo,

ich habe hier eine Funktion gegeben, und habe die ein wenig umgeformt.

[mm] 1000=\bruch{x^{2}}{(1-x)(3-3x)^{3}} [/mm]

[mm] 1000=\bruch{x^{2}}{(1-x)3(1-x)^{3}} [/mm]

[mm] 1000=\bruch{x^{2}}{3(1-x)^{4}} [/mm]

[mm] \wurzel{1000}=\bruch{x}{\wurzel{3}(1-x)^{2}} [/mm]

Wäre das so korrekt?

Vielen Dank schon einmal...

        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mi 18.05.2011
Autor: schachuzipus

Hallo Eismann,

> Hallo,
>
> ich habe hier eine Funktion gegeben, und habe die ein wenig
> umgeformt.
>
> [mm]1000=\bruch{x^{2}}{(1-x)(3-3x)^{3}}[/mm]
>
> [mm]1000=\bruch{x^{2}}{(1-x)3(1-x)^{3}}[/mm] [notok]

Uffpasse und die Potenzgesetze beachten!

Es ist [mm](3-3x)^3=\left[3\cdot{}(1-x)\right]^3=3^3\cdot{}(1-x)^3[/mm]

>
> [mm]1000=\bruch{x^{2}}{3(1-x)^{4}}[/mm]
>
> [mm]\wurzel{1000}=\bruch{x}{\wurzel{3}(1-x)^{2}}[/mm]
>
> Wäre das so korrekt?
>
> Vielen Dank schon einmal...

Gruß

schachuzipus


Bezug
                
Bezug
Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 18.05.2011
Autor: Ice-Man

Also dann,

[mm] \wurzel{1000}=\bruch{x}{\wurzel{27}(1-x)^{2}} [/mm]

?

Bezug
                        
Bezug
Auflösen: gelesen?
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 18.05.2011
Autor: Loddar

Hallo!


Ist so ein Minitick besser. Aber hast Du auch meine Anmerkung gelesen?


Gruß
Loddar


Bezug
        
Bezug
Auflösen: mit Vorzeichen aufpassen
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 18.05.2011
Autor: Loddar

Hallo Ice-Man!


Außerdem gehen bei Deinem Ansatz eventuell Lösungen verloren.

Bedenke, dass gilt: [mm] $x^2 [/mm] \ = \ a$   [mm] $\gdw$ [/mm]   $|x| \ = \ [mm] \wurzel{a}$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Auflösen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:04 Mi 18.05.2011
Autor: Ice-Man

Sorry, weis jetzt nicht wie du das meinst...

Bezug
                        
Bezug
Auflösen: Gegenfrage
Status: (Antwort) fertig Status 
Datum: 18:05 Mi 18.05.2011
Autor: Loddar

Hallo Ice-Man!


Wieviele und welche Lösungen hat die Gleichung [mm] $x^2 [/mm] \ = \ 4$ ?


Gruß
Loddar


Bezug
                                
Bezug
Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mi 18.05.2011
Autor: Ice-Man

Na 2 Stück,

-2 und +2

Bezug
                                        
Bezug
Auflösen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 18:22 Mi 18.05.2011
Autor: Loddar

Hallo!


> Na 2 Stück,
>  
> -2 und +2

[ok] Genau. Und analog verhält es sich auch bei Deiner Aufgabe.


Gruß
Loddar


Bezug
                                                
Bezug
Auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Mi 18.05.2011
Autor: Ice-Man

Na deswegen hätt ich ja "meine Funktion" mit der quadratischen Gleichung gelöst..

Wollt ja nur wissen ob der Ansatz richtig ist ;)

Bezug
                                                        
Bezug
Auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mi 18.05.2011
Autor: MathePower

Hallo Ice-Man,

> Na deswegen hätt ich ja "meine Funktion" mit der
> quadratischen Gleichung gelöst..
>  
> Wollt ja nur wissen ob der Ansatz richtig ist ;)


Lass die Gleichung zunächst so stehen:

[mm]1000=\bruch{x^{2}}{3^{3}(1-x)^{4}}[/mm]

Multiplizierst Du mit dem Hauptnenner durch und
bringst dann alles auf eine Seite,  dann ergibt sich
eine Gleichung 4. Grades, deren Koeffiizienten symmetrisch sind.
d.h. [mm]a_{4}=a_{0}, \ a_{3}=a_{1}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]