www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Aufleitung
Aufleitung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 Di 24.08.2010
Autor: zitrone

Hallo:),

ich hab wieder en paar Aufgaben zu dem Thema Aufleitungen bekommen. Diese sind etwas kniffliger, daher bin ich mir recht unsicher, ob ich auch das richtige getan habe.Könnte sich das bitte mal jemand ansehen und mir bei Fehlern helfen?

1)
[mm] \bruch{x^{3}+2x}{x^{4}} [/mm]
[mm] =\bruch{x^{3}}{x^{4}}+\bruch{2x}{x^{4}} [/mm]

[mm] =x^{3}*x^{-4}+ 2x*x^{-4} [/mm]

F(x)= [mm] \bruch{1}{4}x^{4}*(-\bruch{1}{3x^{3}})+x^{2}*(-\bruch{1}{3x}) [/mm]


2)
f(x)= [mm] \bruch{x^{3}-1}{2x^{2}} [/mm]

[mm] =\bruch{x^{3}}{2x^{2}}-\bruch{1}{2x^{2}} [/mm]

[mm] =x^{3}*2x^{-2} [/mm] - [mm] 1*2x^{-2} [/mm]

F(x)= [mm] \bruch{1}{4}x^{4}*(-\bruch{2}{x})+\bruch{2}{x^{2}} [/mm]

3)
f(x)= [mm] \bruch{1+x+x^{3}}{3x^{3}} [/mm]

[mm] =\bruch{1}{3x^{3}}+ \bruch{x}{3x^{3}}+\bruch{x^{3}}{3x^{3}} [/mm]


F(x)= [mm] -\bruch{1}{6x^{2}}+\bruch{-x^{-1}}{3} [/mm]

lg zitrone

        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Di 24.08.2010
Autor: Steffi21

Hallo, bitte benutze nicht das Unwort "Aufleitung", du bestimmst die Stammfunktion, du hast korrekt erkannt, deine Funktionen in einzelne Summanden aufzuspalten, in Nr. 1) kannst du dann kürzen

[mm] f(x)=\bruch{x^{3}}{x^{4}}+\bruch{2x}{x^{4}}=\bruch{1}{x^{1}}+\bruch{2}{x^{3}}=\bruch{1}{x}+2x^{-3} [/mm]

die Stammfunktion vom 1. Summanden sollte dir (schon) bekannt sein, beim 2. Summanden benutze

[mm] \integral_{}^{}{x^{n} dx}=\bruch{1}{n+1}x^{n+1}+C [/mm] mit [mm] n\not=-1 [/mm]

dann schaffst du auch die anderen Aufgaben

Steffi


Bezug
                
Bezug
Aufleitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Mi 25.08.2010
Autor: zitrone

Hallo,

Danke dir!:) Jetzt ist es um einiges einfacher:D

LG zitrone

Bezug
                
Bezug
Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Mi 25.08.2010
Autor: zitrone

Hallo,

hab da aber noch eine Frage zu einer Aufgabe:

f(x)= [mm] \bruch{(2x+1)^{2}+1}{x} [/mm] = [mm] \bruch{2x+1}{x}+\bruch{1}{x} [/mm]

= [mm] \bruch{2+1}{1}+\bruch{1}{x}=3+\bruch{1}{x} [/mm]

F(x)=3x [mm] +1x^{-0} [/mm]


richtig so?

lg zitrone

Bezug
                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 25.08.2010
Autor: Pappus

Guten Abend!

Du schreibst:

[#000000]Hallo,
hab da aber noch eine Frage zu einer Aufgabe:

f(x)= [url=teximginfo?id=1547849][/#000000]


Leider hast Du übersehen, dass im Zähler des ersten Bruches ein Quadrat steht, welches Du bei Deinen weiteren Rechnungen unterschlagen hast.

Also erst die Klammer im Zähler ausmultiplizieren, dann kürzen und zusammenfassen.

Salve.

Pappus


Bezug
                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 25.08.2010
Autor: Pappus

Guten Abend,

ich hatte eben den neuen Editor ausprobieren wollen, was aber offensichtlich nicht so gut gegklappt hat. Also noch einmal:

> Hallo,
>  
> hab da aber noch eine Frage zu einer Aufgabe:
>  
> f(x)= [mm]\bruch{(2x+1)^{2}+1}{x}[/mm] =
> [mm]\bruch{2x+1}{x}+\bruch{1}{x}[/mm]
>  
> = [mm]\bruch{2+1}{1}+\bruch{1}{x}=3+\bruch{1}{x}[/mm]

...

Irgendwie hast Du übersehen, dass im Zähler des ersten Bruches noch ein Quadrat stehen müsste:

f(x)= [mm]\bruch{(2x+1)^{2}+1}{x}[/mm] =  [mm]\bruch{\red{(2x+1)^2}}{x}+\bruch{1}{x}[/mm]

Erst die Klammer ausmultiplizieren, zusammenfassen und dann weiterrechnen.

Salve

Pappus

Bezug
                                
Bezug
Aufleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 25.08.2010
Autor: zitrone

Hallo,

Oh, das hab ich übersehen!^^"

Ist es dann so richtig?

f(x)= [mm] \bruch{(2x+1)^{2}+1}{x} [/mm]  = [mm] \bruch{4x^{2}+4x+3}{x}= [/mm]
[mm] \bruch{4x^{2}}{x}+\bruch{4x}{x}+ \bruch{3}{x} [/mm]

lg zitrone

Bezug
                                        
Bezug
Aufleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 25.08.2010
Autor: Kroni

Hi,

es gilt doch:

[mm] $(2x+1)^2+1 [/mm] =  [mm] 4x^2+4x+1+1 [/mm] = [mm] 4x^2+4x+2$ [/mm]

du hast am Ende aber ne $3$ da stehen. Wenn du also die $3$ durch ne $2$ austauschst, passt es.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]