www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Aufgabenblatt 7.1
Aufgabenblatt 7.1 < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabenblatt 7.1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Fr 01.01.2021
Autor: ireallydunnoanything

Aufgabe 1
Es sei G eine Gruppe und N sei eine normale Untergruppe von G. Zeigen Sie, dass G/N genau dann abelsch ist, wenn [G, G] < N. Insbesondere ist G/[G, G] abelsch.

Aufgabe 2
Es sei G eine einfache, nicht-abelsche Gruppe und A sei eine abelsche Gruppe. Beweisen Sie, dass alle Homomorphismen f : G → A trivial sind.

zu Aufgabe 1) Mir fehlt noch das grundlegende Verständnis was eine "normale Untergruppe" ist. Könnte mir das jemand erklären und mir helfen einen Ansatz für diese Aufgabe zu finden ? Abelsch ist klar: das bedeutet a*b = b*a (wenn die Verknüpfung die Multiplikation ist).

zu Aufgabe 2) Hier fehlt mir auch jeglicher Ansatz, den ich brauche, um die Aufgabe zu lösen. Homomorphismus ist klar, dass bedeutet f(x+y)/f(x*y) = f(x) + f(y)/f(x)*f(y). Über eine Erklärung und den Ansatz zu dieser Aufgabe wäre ich sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aufgabenblatt 7.1: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Fr 01.01.2021
Autor: statler

Hi!

> Es sei G eine Gruppe und N sei eine normale Untergruppe von
> G. Zeigen Sie, dass G/N genau dann abelsch ist, wenn [G, G]
> < N. Insbesondere ist G/[G, G] abelsch.

>  Es sei G eine einfache, nicht-abelsche Gruppe und A sei
> eine abelsche Gruppe. Beweisen Sie, dass alle
> Homomorphismen f : G → A trivial sind.

>  zu Aufgabe 1) Mir fehlt noch das grundlegende Verständnis
> was eine "normale Untergruppe" ist. Könnte mir das jemand
> erklären und mir helfen einen Ansatz für diese Aufgabe zu
> finden ? Abelsch ist klar: das bedeutet a*b = b*a (wenn die
> Verknüpfung die Multiplikation ist).

Normal bedeutet, daß aN = Na für alle a [mm] $\in$ [/mm] G ist. Wenn G/N abelsch ist, dann ist aN [mm] $\cdot$ [/mm] bN = bN [mm] $\cdot$ [/mm] aN, also abN = baN, also [mm] a^{-1}b^{-1}abN [/mm] = N, und das ist genau das, was du brauchst.

>  
> zu Aufgabe 2) Hier fehlt mir auch jeglicher Ansatz, den ich
> brauche, um die Aufgabe zu lösen. Homomorphismus ist klar,
> dass bedeutet f(x+y)/f(x*y) = f(x) + f(y)/f(x)*f(y). Über
> eine Erklärung und den Ansatz zu dieser Aufgabe wäre ich
> sehr dankbar.

Wenn G keine Normalteiler hat, ist jeder Homomrphismus injektiv oder trivial. Injektiv kann er hier nicht sein, da A abelsch ist und G nicht, also ist er trivial.

Gruß D


Bezug
                
Bezug
Aufgabenblatt 7.1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Sa 02.01.2021
Autor: ireallydunnoanything

Vielen Dank für die schnelle Antwort. Das hilft mir auf jeden Fall weiter.

Gruß

Alex

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]