www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Aufgaben zum Skalarprodukt
Aufgaben zum Skalarprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgaben zum Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 20.05.2007
Autor: Vicky89

Aufgabe
Es sei [mm] \vec{a}_{0} [/mm] ein EInheitsvektor: Berechne:
a) [mm] \vec{a}_{0} [/mm] * [mm] \vec{a}_{0} [/mm]
b) [mm] \vec{a}_{0} *r\vec{a}_{0} [/mm]
c) [mm] \vec{a}_{0} *(-\vec{a}_{0} [/mm] )

u.sw.

Scheint mir eine sehr leichte Aufgabe zu sein, allerdings weiß ich trotzdem nicht so wirklich, was ich machen muss....
Wäre sehr dankbar, wenn mir jemand helfen würde...

Lg

        
Bezug
Aufgaben zum Skalarprodukt: Betrag = 1
Status: (Antwort) fertig Status 
Datum: 17:04 So 20.05.2007
Autor: Loddar

Hallo Vicky!


Durch die Info [mm] $\vec{a}_0 [/mm] \ [mm] \text{ist Einheitsvektor}$ [/mm] wissen wir, dass gilt:

[mm] $\left|\vec{a}_0\right| [/mm] \ = \ [mm] \left|\vektor{a_1 \\ a_2 \\ a_3 \\ ... \\ a_n}\right| [/mm] \ = \ [mm] \wurzel{a_1^2+a_2^2+a_3^2+...+a_n^2} [/mm] \ [mm] \red{= \ 1}$ [/mm]


Damit kennen wir auch die Beziehung:  [mm] $a_1^2+a_2^2+a_3^2+...+a_n^2 [/mm] \ = \ 1$


Nun also die verschiedenen MBSkalarprodukte berechnen und o.g. Beziehung anwenden.


Gruß
Loddar


Bezug
                
Bezug
Aufgaben zum Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 So 20.05.2007
Autor: Vicky89

danke für die antwort...

das heißt bei a) käme [mm] \vec{a}_{0}^{2} [/mm]  = 1 raus?
b) r
c) -1
??

Bezug
                        
Bezug
Aufgaben zum Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 So 20.05.2007
Autor: Gonozal_IX


> a) 1
> b) r
> c) -1
> ??

Jap, Jap, Jap :-)

Lässt sich auch einfacher über die Beziehung erklären:

Einheitsvektor [mm] \gdw \sqrt{\vec{a}_{0}^{2}} [/mm] = 1 ;-)

Das aber nur als Info :-)

MfG,
Gono.

PS: Habt ihr das mit der Schreibweise [mm] \vec{a}_{0}^{2} [/mm] im Unterricht?


Bezug
                                
Bezug
Aufgaben zum Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 So 20.05.2007
Autor: Vicky89

danke, danke  =)

äh..wieso sollten wir das nicht im unterricht haben?
oder meinst du wegen den fehlenden betragsstrichen?!

Bezug
                                        
Bezug
Aufgaben zum Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 So 20.05.2007
Autor: Gonozal_IX

Joa, denn ist so ad-hoc nicht klar, was nen Vektor hoch 2 bedeutet *g*
Die Schreibweise [mm] \vec{a} [/mm] * [mm] \vec{b} [/mm] fürs Skalarprodukt ist eher physik-bezogen, in der Mathematik schreibt man meist [mm] <\vec{a},\vec{b}> [/mm] oder einfacher <a,b>



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]