www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Aufgabe zum Induktionsbeweis
Aufgabe zum Induktionsbeweis < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zum Induktionsbeweis: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:51 Di 09.02.2010
Autor: RalU

Aufgabe
Hallo. Es geht um folgende Aussage, die mit Induktion bewiesen werden soll.

Sei x [mm] \in \IR\setminus [/mm] { 1 }. Dann gilt [mm] \summe_{k=0}^{n-1}x^{k} [/mm] = [mm] \bruch{1-x^{n}}{1-x} [/mm]

IA] z.z. E(1) gilt.
also:
[mm] \summe_{k=0}^{n-1}x^{k} [/mm] = [mm] x^{0} [/mm] = 1
= [mm] \bruch{1-x^{1}}{1-x} [/mm] = 1

IS] z.z. E(n) => E(n+1) gilt
IV) E(n) gilt, also [mm] \bruch{1-x^{n}}{1-x} [/mm] kann verwendet werden

es gilt also:
[mm] \summe_{k=0}^{(n+1)-1}x^{k} [/mm]
=(nach Verw. IV) [mm] \bruch{1-x^{n}}{1-x} [/mm] + [mm] x^{(n+1)-1} [/mm]
[mm] =\bruch{1-x^{n}}{1-x} [/mm] + [mm] x^{n} [/mm]
[mm] =\bruch{1-x^{n}+(1-x)x^{n}}{1-x} [/mm]
[mm] =\bruch{1-x^{n}+x^{n}-x^{2n}}{1-x} [/mm]
[mm] =\bruch{1-x^{2n}}{1-x} [/mm]

hier häng ich nun.... Ich frag mich insbesondere, ob mein Ansatz komplett falsch war.

Gruß, Ralf

        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Di 09.02.2010
Autor: XPatrickX


> Hallo. Es geht um folgende Aussage, die mit Induktion
> bewiesen werden soll.
>  
> Sei x [mm]\in \IR\setminus[/mm] { 1 }. Dann gilt
> [mm]\summe_{k=0}^{n-1}x^{k}[/mm] = [mm]\bruch{1-x^{n}}{1-x}[/mm]
>  IA] z.z. E(1) gilt.
>  also:
> [mm]\summe_{k=0}^{n-1}x^{k}[/mm] = [mm]x^{0}[/mm] = 1
> = [mm]\bruch{1-x^{1}}{1-x}[/mm] = 1
>  
> IS] z.z. E(n) => E(n+1) gilt
>  IV) E(n) gilt, also [mm]\bruch{1-x^{n}}{1-x}[/mm] kann verwendet
> werden
>  
> es gilt also:
> [mm]\summe_{k=0}^{(n+1)-1}x^{k}[/mm]
>  =(nach Verw. IV) [mm]\bruch{1-x^{n}}{1-x}[/mm] + [mm]x^{(n+1)-1}[/mm]
>  [mm]=\bruch{1-x^{n}}{1-x}[/mm] + [mm]x^{n}[/mm]
>  [mm]=\bruch{1-x^{n}+(1-x)x^{n}}{1-x}[/mm]

Hallo,

nach den Potenzgesetzen gilt immer noch:

[mm] x*x^n=x^{n+1} [/mm]

Gruß Patrick


>  [mm]=\bruch{1-x^{n}+x^{n}-x^{2n}}{1-x}[/mm]
>  [mm]=\bruch{1-x^{2n}}{1-x}[/mm]
>  
> hier häng ich nun.... Ich frag mich insbesondere, ob mein
> Ansatz komplett falsch war.
>  
> Gruß, Ralf


Bezug
                
Bezug
Aufgabe zum Induktionsbeweis: weitere Frage, gleiche Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:56 Di 09.02.2010
Autor: RalU

Ok, danke. Das war ein Fehler mit den Potenzen unten. Danke.

Allerdings komm ich dann immer noch nicht zum Ziel.
War denn mein Ansatz bis dahin in Ordnung?

also unten im IS] steht dann ja:
[mm] =\bruch{1-x^{n}+x^{n}-x^{(n+1)}}{1-x} [/mm]
[mm] =\bruch{1+x^{n+1}}{1-x} [/mm]
[mm] =\bruch{1-x^{n}*x}{1-x} [/mm]
... tja, da gehts dann wieder nicht weiter...
Mein Ziel ist doch: den Ausdruck: [mm] \bruch{1-x^{n}}{1-x} [/mm] zu erreichen, oder nicht?




Bezug
                        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Di 09.02.2010
Autor: schachuzipus

Hallo Ralf,

> Ok, danke. Das war ein Fehler mit den Potenzen unten.
> Danke.
>  
> Allerdings komm ich dann immer noch nicht zum Ziel.
>  War denn mein Ansatz bis dahin in Ordnung?
>  
> also unten im IS] steht dann ja:
>  [mm]=\bruch{1-x^{n}+x^{n}-x^{(n+1)}}{1-x}[/mm] [ok]
>  [mm]=\bruch{1\red{+}x^{n+1}}{1-x}[/mm]

Hier hast du aus einem "-" ein "+" gemacht. Wieso?

Richtigerweise steht da [mm] $\frac{1\red{-}x^{n+1}}{1-x}$ [/mm]

Und das soll rauskommen - fertig!

>  [mm]=\bruch{1-x^{n}*x}{1-x}[/mm]
>  ... tja, da gehts dann wieder nicht weiter...
>  Mein Ziel ist doch: den Ausdruck: [mm]\bruch{1-x^{n}}{1-x}[/mm] zu
> erreichen, oder nicht?

LG

schachuzipus


Bezug
                                
Bezug
Aufgabe zum Induktionsbeweis: weitere Frage
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 09.02.2010
Autor: RalU

Aufgabe
ok, dann steht da:
[mm] \frac{1-x^{n+1}}{1-x} [/mm]
, seh ich ein.


Aber warum soll das rauskommen und nicht
[mm] \frac{1-x^{n}}{1-x} [/mm] ? (vgl. Aufgabenstellung)



Bezug
                                        
Bezug
Aufgabe zum Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Di 09.02.2010
Autor: fred97

Im Induktionsschritt (n --> n+1) mußt Du doch zeigen, dass

             $ [mm] \summe_{k=0}^{n}x^{k} [/mm] $ = $ [mm] \bruch{1-x^{n+1}}{1-x} [/mm] $

ist

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]