www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Aufgabe zu Tschebyscheff
Aufgabe zu Tschebyscheff < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe zu Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:14 Fr 11.07.2008
Autor: phil-abi05

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

bräuchte große Hilfe bei der Aufgabe oben. Leider verstehe ich diese ganz und gar nicht. Ich habe zwar die Lösungen da, aber nur in sehr kurzer Form, wo ich auch nicht wirklich von schlau werde. Hoffe mir kann jemand helfen (und hoffe, dass es mit dem hochgeladenem Screenshot als Aufgabe auch OK ist). Besten dank schonmal.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Aufgabe zu Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Sa 12.07.2008
Autor: vivo

Hallo,

X = [mm] \bruch{1}{n} \summe_{i=1}^{n} X_i [/mm]

[mm] E[\bruch{1}{n} \summe_{i=1}^{n} X_i] [/mm] = [mm] \bruch{1}{n} E[\summe_{i=1}^{n} X_i] [/mm] = [mm] \bruch{1}{n} \summe_{i=1}^{n} [/mm] E [mm] X_i [/mm] = [mm] \bruch{1}{n} [/mm] n [mm] E[X_1] [/mm] = [mm] E[X_1] [/mm] = p

P(|Y-EY| [mm] \ge \epsilon [/mm] ) [mm] \le \bruch{Var(Y)}{\epsilon^2} [/mm]

P(|X-p| [mm] \ge [/mm] 0,01) [mm] \le \bruch{Var(X)}{0,01^2} [/mm]

[mm] Var(X_i) [/mm] = [mm] E[X_i^2] [/mm] - [mm] (E[X_i])^2 [/mm] = p - [mm] p^2 [/mm]

Var(X) = [mm] Var(\bruch{1}{n}\summe_{i=1}^{n} X_i) [/mm] = [mm] \bruch{1}{n^2}\summe_{i=1}^{n} [/mm] Var [mm] X_i [/mm] = [mm] \bruch{1}{n} (p-p^2) [/mm]

P(|X-p| [mm] \ge [/mm] 0,01) [mm] \le \bruch{(p-p^2)}{0,0001n} [/mm]

zu b)

[mm] \bruch{p-p^2}{0,0001n} \le [/mm] 0,06

n [mm] \ge 166666\bruch{2}{3} [/mm]

Bezug
                
Bezug
Aufgabe zu Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Sa 19.07.2008
Autor: phil-abi05

Hallo,

in unserer Lösung haben wir aber folgendes raus:

http://www.pictureupload.de/originals/pictures/190708160451_stat2.JPG

Was ist denn nun richtig ?

Bezug
                        
Bezug
Aufgabe zu Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 19.07.2008
Autor: vivo

hallo,

a) ist ja exakt das gleiche ...

b) ist auf dem bild besser abgeschätzt als in meiner lösung ich hab [mm] p-p^2 [/mm] zu groß geschätzt

gruß

Bezug
                                
Bezug
Aufgabe zu Tschebyscheff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Sa 19.07.2008
Autor: phil-abi05

Hey, ich hab noch mal ne kleine Frage. Und zwar was wird da genau abgeschätzt ?? Ich blicks nich so ganz...

Bezug
                                        
Bezug
Aufgabe zu Tschebyscheff: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 19.07.2008
Autor: vivo

die a) verstehst du? wenn ja dann kommt die b):

in a) schätzt man ja eine w-keit. und in b) ist gefragt wann diese höchstens 0,06 beträt.

in die w-keit gibt es zwei unbekannte p und n, n soll herausgefunden werden also muss man p abschätzen bzw. da man weiß dass p kleiner als 1 sein muss (da p eine w-keit. ist) weiss man weiter:

[mm] p-p^2=p(1-p)\le \bruch{1}{4} [/mm]

gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]