www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe-Olympiaden anderer Länder" - Aufgabe #66 (IrMO),(ZT)
Aufgabe #66 (IrMO),(ZT) < MO andere Länder < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #66 (IrMO),(ZT): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 13:12 Mo 18.07.2005
Autor: Hanno

Hallo an alle!

Man finde alle ganzzahligen Lösungspaare $(m,n)$ von

[mm] $(m^2+n)(n^2+m)=(m+n)^3$. [/mm]



Liebe Grüße,
Hanno

        
Bezug
Aufgabe #66 (IrMO),(ZT): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 18.07.2005
Autor: Teletubyyy

Hallo Hanno;

[mm] $(m^2+n)(m+n^2)=(n+m)^3$ [/mm]

Für m = 0 erhällt man die trivialen Lösungen [mm]\{(m,n)|m=0 , n\in\IZ\}[/mm] bzw. analoges für n = 0.

Es sei also im weiteren $n,m [mm] \not= [/mm] 0$

Vereinfacht man nun den obigen Ausdruck:

[mm] $(m^2+n)(m+n^2)=(n+m)^3$ [/mm]
[mm] $\gdw m^2n^2+m^3+n^3+nm=n^3+3n^2m+3nm^2+m^3$ [/mm]
[mm] $\gdw [/mm] (m-3)n^2m+(1-3m)nm=0$

[mm] $\gdw n=\frac{3m-1}{m-3}$ [/mm]

Im weiteren betrachte ich nun n als [mm] $f(m)\in\IR$ [/mm]

f ist nun eine ganzrationale Funktion mit einer Pol bei m = 3. sowohl in dem Intervall [mm] $(-\infty;3)$, [/mm] als auch in [mm] $(3;\infty)$ [/mm] ist f jeweils monoton fallend. ferner erhällt man y=3 als waagerechte Asymtote.

Zunächst betrachte ich den Bereich links der Pol (m<3):
Wegen der Monotonie und dem asymtotischen Verhalten, ist nun aber auch n<3.

Da [mm] $(n,m,)\in\IZ^2$ [/mm] überprüfe ich zunächst für $f(m)=2,1,-1,..$ das zugehorige m auf ganzzahligkeit:

f(m)=2:     [mm] $2=\frac{3m-1}{m-3} \gdw [/mm] m=-5$

f(m)=1:     [mm] $1=\frac{3m-1}{m-3} \gdw [/mm] m=-1$

Für weitere ganzzahlige Lösungen in [mm] $(-\infty;3)$ [/mm] verbleiben nun nur noch (n,m)=(f(1),1),(f(2),2).
f(1)=-1; f(2)=-5

Jetzt muss ich noch f in [mm] (3;\infty) [/mm] untersuchen:

f(4)=11; f(5)=7; f(6)=17/3<6

Wegen der Monotonie, und Beschränktheit kann es nur noch Lösungen mit f(m)=5,4 geben

f(m)=5:     [mm] $5=\frac{3m-1}{m-3} \gdw [/mm] m= 7$

f(m)=4:     [mm] $4=\frac{3m-1}{m-3} \gdw [/mm] m=11$


[mm] L=\{(n,m)|n=0 ,m\in\IZ \, \, ; n\in\IZ , m=0 \,\, ; (n,m)=(2;-5),(1;-1),(-1;1),(-5;2),(11;4),(7;5),(5;7),(7;11)\} [/mm]

Ich hoffe ich hab das jetzt nicht zu umständlich gemacht.

Gruß Samuel

Bezug
                
Bezug
Aufgabe #66 (IrMO),(ZT): Richtig! Alternativlösung
Status: (Antwort) fertig Status 
Datum: 08:45 Di 19.07.2005
Autor: Hanno

Hallo Samuel!

Juhu, diesmal habe ich alles nachvollziehen können!

> $ [mm] (m^2+n)(m+n^2)=(n+m)^3 [/mm] $
> Für m = 0 erhällt man die trivialen Lösungen $ [mm] \{(m,n)|m=0 , n\in\IZ\} [/mm] $ bzw. analoges für n = 0.
> Es sei also im weiteren $ n,m [mm] \not= [/mm] 0 $
> Vereinfacht man nun den obigen Ausdruck:
> $ [mm] (m^2+n)(m+n^2)=(n+m)^3 [/mm] $

>$ [mm] \gdw m^2n^2+m^3+n^3+nm=n^3+3n^2m+3nm^2+m^3 [/mm] $

> $ [mm] \gdw [/mm] (m-3)n^2m+(1-3m)nm=0 $
> $ [mm] \gdw n=\frac{3m-1}{m-3} [/mm] $

[ok].

> Zunächst betrachte ich den Bereich links der Pol (m<3):
> Wegen der Monotonie und dem asymtotischen Verhalten, ist nun aber auch n<3.

> Da $ [mm] (n,m,)\in\IZ^2 [/mm] $ überprüfe ich zunächst für $ f(m)=2,1,-1,.. $ das zugehorige m auf ganzzahligkeit:

> f(m)=2:     $ [mm] 2=\frac{3m-1}{m-3} \gdw [/mm] m=-5 $

> f(m)=1:     $ [mm] 1=\frac{3m-1}{m-3} \gdw [/mm] m=-1 $

[ok]

> Für weitere ganzzahlige Lösungen in $ [mm] (-\infty;3) [/mm] $ verbleiben nun nur noch (n,m)=(f(1),1),(f(2),2).
> f(1)=-1; f(2)=-5

> Eine schöne Idee! Klasse!

> Jetzt muss ich noch f in $ [mm] (3;\infty) [/mm] $ untersuchen:

> f(4)=11; f(5)=7; f(6)=17/3<6

> Wegen der Monotonie, und Beschränktheit kann es nur noch Lösungen mit f(m)=5,4 geben

> f(m)=5:     $ [mm] 5=\frac{3m-1}{m-3} \gdw [/mm] m= 7 $

> f(m)=4:     $ [mm] 4=\frac{3m-1}{m-3} \gdw [/mm] m=11 $

[ok] Schön gemacht, Samuel!

> Ich hoffe ich hab das jetzt nicht zu umständlich gemacht

Als ich die Aufgabe löste, habe ich folgendes getan: wie du habe ich bis zu $ [mm] n=\frac{3m-1}{m-3} [/mm] $ umgeformt. Betrachten wir nun den Bruch rechts. Sei $p$ ein Primeiler von $m-3$ und von $3m-1$, so ist er auch Teiler von $3m-1-3(m-3)=8$, d.h. $p=2$; $m-3$ ist also Zweierpotenz, d.h. es gibt ein $x$ mit [mm] $m=2^x+3$. [/mm] Ebenso erhalten wir [mm] $n=2^y+3$. [/mm] Setzen wir dies in obige Gleichung ein, erhalten wir nach kurzen Umformungen [mm] $2^{x+y}=8$. [/mm] Durchtesten der daraus resultierenden Fälle liefert das gewünschte Ergebnis.
Man hätte sich die Sache mit der Zweierpotenz auch noch ein wenig erleichtern können, denn die Argumentation bezüglich der Primteiler von Zähler und Nenner kann natürlich auch auf beliebige Teiler, und, da der Bruch ganzzahlig ist, somit auch auf $m-3$ selbst angewandt werden. Somit muss $m-3=1,2,4,8$ gelten, womit man direkt bei den zu untersuchenden Fälle wäre.
Noch schöner geht es allerdings so: wie man leicht nachrechnet, ist die Anfangsbedingung für [mm] $mn\not= [/mm] 0$ zu $(m-3)(n-3)=8$ äquivalent; der Rest ist nun einfach.


Damit wäre diese Aufgabe zu Genüge diskutiert :)

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]