www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Aufgabe #56 (?),(GEO)
Aufgabe #56 (?),(GEO) < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #56 (?),(GEO): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 19:53 Sa 09.07.2005
Autor: Hanno

Hallo an alle!

O sei ein Punkt innerhalb des Dreieckes ABC. Die Höhen des Dreiecks seien AD,BE,CF. Ferner seien P,Q,R die Lotfußpunkte der Lote von O auf AD,BE,CF. Zeige, dass die Dreiecke PQR und ABC ähnlich sind.


Liebe Grüße,
Hanno


        
Bezug
Aufgabe #56 (?),(GEO): Tip [mit Konstruktion]
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 So 24.07.2005
Autor: Hanno

Hallo an alle!

Im Anhang findet ihr eine Konstruktion des Problemes, die eine "Kleinigkeit" beinhaltet, die schon Hinweise auf die Lösung des Problemes gibt: nämlich der Kreis durch PQRNO. Versucht doch bitte zu zeigen, dass PQRNO auf einem Kreis liegen müssen und versucht dann mit Hilfe von Peripheriewinkelsatz und ein wenig Übersicht zu zeigen, dass die Winkel in PQR gleich denen in ABC sind.

Nur Mut, das ist nicht schwierig! Immer daran denken, dass vier Punkte genau dann auf einem Kreis liegen, wenn gegenüberliegende Winkel supplementär sind, sich also zu 180° ergänzen.

[Dateianhang nicht öffentlich]


Liebe Grüße,
Hanno

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
        
Bezug
Aufgabe #56 (?),(GEO): Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Sa 30.07.2005
Autor: Hanno

Hallo an alle!

Nun gut, dann löse ich das ganze mal auf:

Die Winkel [mm] $\angle [/mm] ORN, [mm] \angle [/mm] NQO$ sind rechte Winkel, folglich ist das Viereck $ORNQ$ ein Sehnenviereck. Gleiches gilt für die Winkel [mm] $\angle [/mm] ORN, [mm] \angle [/mm] NPO$, daher ist auch das Viereck $ORNP$ ein Sehnenviereck. Es folgt, dass die Punkte O,R,N,P,Q auf einem Kreis liegen, wie es auch schon die Konstruktion in den Tips andeutet. Nun folgt der Rest über den Peripheriewinkelsatz: einerseits [mm] $\angle RQP=\angle RNP=90°-\angle DCN=\angle [/mm] ABC$, andererseits [mm] $\angle PRQ=\angle PNQ=90°-\angle NBD=\angle [/mm] BCA$. Damit stimmen $PQR$ und $ABC$ in allen Winkeln überein, sind daher ähnlich, was zu zeigen war.


Nun, damit lassen wir die Aufgabe dann mal ruhen.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]