www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe-Olympiaden anderer Länder" - Aufgabe #52 (IrMO)
Aufgabe #52 (IrMO) < MO andere Länder < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe #52 (IrMO): Übungsaufgabe
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 12:17 Sa 09.07.2005
Autor: Hanno

Hallo an alle!

Es sei [mm] $f:\IN\to\IN$ [/mm] mit $f(1)=2$ und [mm] $f(n+1)=(f(n))^2-f(n)+1, [/mm] n=1,2,...$. Beweise, dass für alle [mm] $n\geq [/mm] 2$ die Ungleichungskette
[mm] $1-\frac{1}{2^{2^{n-1}}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\cdots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}$ [/mm]
gilt.


Liebe Grüße,
Hanno

        
Bezug
Aufgabe #52 (IrMO): Lösungsversuch
Status: (Frage) beantwortet Status 
Datum: 01:22 Mo 18.07.2005
Autor: KaiAhnung

Hallo Hanno.

> Es sei [mm]f:\IN\to\IN[/mm] mit [mm]f(1)=2[/mm] und [mm]f(n+1)=(f(n))^2-f(n)+1, n=1,2,...[/mm].
> Beweise, dass für alle [mm]n\geq 2[/mm] die Ungleichungskette
> [mm]1-\frac{1}{2^{2^{n-1}}}<\frac{1}{f(1)}+\frac{1}{f(2)}+\cdots+\frac{1}{f(n)}<1-\frac{1}{2^{2^{n}}}[/mm]
>  gilt.

Es lässt sich induktiv zeigen, dass
[mm]\frac{1}{f(1)}+\frac{1}{f(2)}+\cdots+\frac{1}{f(n)} = \frac{f(n+1)-2}{f(n+1)-1}[/mm]

Induktionsanfang (f(1)=2, f(2)=3, f(3)=7):
[mm]\frac{1}{f(1)}+\frac{1}{f(2)}=\frac{5}{6}=\frac{f(3)-2}{f(3)-1}[/mm]

Ind.-Schritt:
[mm]\frac{f(n+1)-2}{f(n+1)-1}+\frac{1}{f(n+1)}=\frac{f(n+1)^2-2f(n+1)+f(n+1)-1}{f(n+1)^2-f(n+1)}=\frac{f(n+2)-2}{f(n+2)-1}[/mm]

Desweiteren ist
[mm]\frac{f(n+1)-2}{f(n+1)-1}=1-\frac{1}{f(n+1)-1}[/mm]

Es bleibt zu zeigen, dass
[mm]1-\frac{1}{2^{2^{n-1}}}<1-\frac{1}{f(n+1)-1}<1-\frac{1}{2^{2^{n}}}[/mm]

[mm]\Leftrightarrow 2^{2^{n-1}} [mm]\Leftrightarrow 2^{2^{n-1}}+1
Die linke Seite kann man wie folgt induktiv zeigen:
Ind.-Anfang: [mm]f(3)=7>5=2^{2^{2-1}}+1[/mm]
Ind.-Schritt: [mm]f(n+2)=f(n+1)(f(n+1)-1)+1>(2^{2^{n-1}}+1)2^{2^{n-1}}+1=2^{2^n}+2^{2^{n-1}}+1>2^{2^n}+1[/mm]

Die rechte Seite der Ungleichung lautet:
[mm]f(n+1)<2^{2^{n}}+1[/mm]
Beweist man, dass [mm]f(n+1)<2^{2^{n}-1}[/mm], so ist diese bewiesen.

Dies wird wiederum induktiv gezeigt:
Ind.-Anfang: [mm]f(3)=7<8=2^{2^2-1}[/mm]
Ind.-Schritt:
[mm]f(n+2)=f(n+1)^2-f(n+1)+1<2^{2^{n+1}-2}-2^{2^{n}-1}+1<2^{2^{n+1}-1}[/mm]

Ich hoffe das stimmt.

MfG
Jan

Bezug
                
Bezug
Aufgabe #52 (IrMO): Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Mo 18.07.2005
Autor: Hanno

Hallo Jan!

Deine Abschätzungen am Ende scheinen sehr grob, ich konnte auf die Schnelle aber keinen Fehler entdecken! Meinen absoluten [respekt], die Idee mit der Induktion zu Beginn ist wirklich genial!

Ich stelle hier gliech noch eine weitere Aufgabe aus einer ehemaligen Bundesrunde der DeMO herein, die sich, wie man schnell einsieht, auf genau das gleiche Problem reduziert.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe-Olympiaden anderer Länder"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]