www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Aufgabe - Vektoren
Aufgabe - Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufgabe - Vektoren: Benötige Tip
Status: (Frage) beantwortet Status 
Datum: 08:46 So 17.12.2006
Autor: KnockDown

Aufgabe
Gegeben seien die folgenden vier Vektoren in [mm] \IR^3 [/mm]

[mm] $\vec{v_1}=\vektor{1 \\ 0 \\ -1}, \vec{v_2}=\vektor{2 \\ 1 \\ 1}, \vec{v_3}=\vektor{-1 \\ 2 \\ 1}, \vec{v_4}=\vektor{2 \\ 1 \\ 3}$ [/mm]

Verifizieren Sie, dass diese vier Vektoren den ganzen Raum [mm] \IR^3 [/mm] aufspannen.

Hi,

ich benötige hier einen Tip um überhaupt mal anfangen zu können. Ich vermute mal dass die Aufgabe was mit dem Span/Linearen Hülle zu tun hat um das zu zeigen oder?


Danke Gruß Thomas

        
Bezug
Aufgabe - Vektoren: Ansatz
Status: (Antwort) fertig Status 
Datum: 10:50 So 17.12.2006
Autor: ron

Hallo Thomas,
die Idee mit dem Spann bzw. lineare Hülle war völlig richtig. Wieviele Vektoren spannen den [mm] \IR^3 [/mm] auf? Es werden drei linear unabhängige Vektoren benötigt. Schreibe die vier Vektoren als Spalten einer Matrix nebeneinander, dann bestimme den Rang dieser Matrix. Kann maximal drei sein, wegen Zeilenrang = Spaltenrang! Sollte dieser Matrixrang kleiner als drei sein, kann der [mm] \IR^3 [/mm] nicht durch die vier gegebenen Vektoren aufgespannt werden.
Die Aufgabenstellung kann auch anders formuliert werden mit dem gleichen Ziel: Wähle aus den vier Vektoren eine Basis des [mm] \IR^3 [/mm] aus.

Hoffe jetzt ist die Aufgabe leichter zu rechnen. Sonst einfach nachfragen.
Gruß
Ron

Bezug
                
Bezug
Aufgabe - Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:13 So 17.12.2006
Autor: KnockDown

Hi,

danke für den Tip, ich habe es ausgerechnet und der Rang beträgt 3, also spannen die 4 Vektoren den gesamten [mm] \IR^3 [/mm] auf :-)


Danke für die Hilfe!



Gruß Thomas

Bezug
                        
Bezug
Aufgabe - Vektoren: Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Mo 18.12.2006
Autor: ron

Hallo,
noch als Zusatz kann somit gezeigt werden, welcher der vier Vektoren Linearkombination der drei anderen ist und somit kein Basisvektor des [mm] \IR^3 [/mm] ist.
Ron

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]