Atomzerfall Anzahl < Atom- und Kernphysik < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:27 Di 02.03.2010 | Autor: | Pille456 |
Aufgabe | Die Zerfallskonstante des Radiums-226 ist [mm] \lambda_{Ra} [/mm] = [mm] 1,38*10^{-11}*s^{-1}. [/mm] Zu einem bestimmten Zeitpunkt liegt 1mg Radium vor. Wie viele Atome zerfallen innerhalb der nächsten Sekunde? |
Hio,
Die Frage seht ihr ja oben. Zur Berechnung sind mit nun 2 Wege bekannt, die wohl auch beide zum richtigen Ergebnis (N = [mm] -3,67*10^7) [/mm] führen sollten. Zumindest einen davon habe ich getestet:
1. Radium 226 hat eine Ordnungszahl von 88 und damit eine Neutronenzahl von 138. Ein Proton hat die Masse [mm] 1,672621637*10^{-27} [/mm] kg, ein Elektron [mm] 9,10938215*10^{-31}kg [/mm] und ein Neutron die Masse [mm] 1,674927211*10^{-27} [/mm] kg
Entsprechend kann man die gesamte Masse eines Ra-226 Atoms berechnen und so herausfinden, wie viel Atome in 1mg enthalten sind. Umrechnen wäre hier zu beachten.
Mit A = [mm] \lambda_{Ra} [/mm] * N lässt sich dann ohne Probleme die Aktivität (= Zerfälle pro Sekunde) berechnen.
2. Etwas "eleganter" bekommt man es mit der Stoffmenge mol hin:
Für Radium gilt: molare Masse = 226,0254 g/mol
N = [mm] \bruch{0,001g*6,023*10^{23}}{226,0254g}
[/mm]
Und entsprechend wieder in A = [mm] \lambda_{Ra}*N [/mm] einsetzen.
Mit dem 2. Ansatz kam ich auch auf das richtige Ergebnis, der 1. ist etwas unpraktikabel, da viele Taschenrechner etc. auf Null runden.
So nun zu meiner eigentlichen Frage: Für den 2. Ansatz brauche ich die molare Masse, diese ist in der Aufgabe jedoch nicht gegeben und ich habe sie gerade selber aus dem Internet rausgesucht. Gibt es auch eine Möglichkeit die Aufgabe ohne weitere Angaben zu lösen? (Davon ausgehend, dass wie in Lösung 1 Protonenmasse etc. zwar bekannt sind, aber man diese natürlich nicht auswendig weiss)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:05 Di 02.03.2010 | Autor: | rainerS |
Hallo!
> Die Zerfallskonstante des Radiums-226 ist [mm]\lambda_{Ra}[/mm] =
> [mm]1,38*10^{-11}*s^{-1}.[/mm] Zu einem bestimmten Zeitpunkt liegt
> 1mg Radium vor. Wie viele Atome zerfallen innerhalb der
> nächsten Sekunde?
> Hio,
>
> Die Frage seht ihr ja oben. Zur Berechnung sind mit nun 2
> Wege bekannt, die wohl auch beide zum richtigen Ergebnis (N
> = [mm]-3,67*10^7)[/mm] führen sollten. Zumindest einen davon habe
> ich getestet:
> 1. Radium 226 hat eine Ordnungszahl von 88 und damit eine
> Neutronenzahl von 138. Ein Proton hat die Masse
> [mm]1,672621637*10^{-27}[/mm] kg, ein Elektron [mm]9,10938215*10^{-31}kg[/mm]
> und ein Neutron die Masse [mm]1,674927211*10^{-27}[/mm] kg
> Entsprechend kann man die gesamte Masse eines Ra-226 Atoms
> berechnen und so herausfinden, wie viel Atome in 1mg
> enthalten sind. Umrechnen wäre hier zu beachten.
> Mit A = [mm]\lambda_{Ra}[/mm] * N lässt sich dann ohne Probleme
> die Aktivität (= Zerfälle pro Sekunde) berechnen.
>
> 2. Etwas "eleganter" bekommt man es mit der Stoffmenge mol
> hin:
> Für Radium gilt: molare Masse = 226,0254 g/mol
> N = [mm]\bruch{0,001g*6,023*10^{23}}{226,0254g}[/mm]
> Und entsprechend wieder in A = [mm]\lambda_{Ra}*N[/mm] einsetzen.
>
> Mit dem 2. Ansatz kam ich auch auf das richtige Ergebnis,
> der 1. ist etwas unpraktikabel, da viele Taschenrechner
> etc. auf Null runden.
>
> So nun zu meiner eigentlichen Frage: Für den 2. Ansatz
> brauche ich die molare Masse, diese ist in der Aufgabe
> jedoch nicht gegeben und ich habe sie gerade selber aus dem
> Internet rausgesucht. Gibt es auch eine Möglichkeit die
> Aufgabe ohne weitere Angaben zu lösen? (Davon ausgehend,
> dass wie in Lösung 1 Protonenmasse etc. zwar bekannt sind,
> aber man diese natürlich nicht auswendig weiss)
Die molare Masse ist in guter Näherung durch die Anzahl der Protonen und Neutronen zu [mm] $88\mathrm{g/mol}+138\mathrm{g/mol}=226\mathrm{g/mol}$ [/mm] gegeben. Diese Genauigkeit (3 Stellen) ist ausreichend, da auch die Zerfallskonstante nur mit 3 Stellen Genauigkeit angegeben ist.
Damit ist
[mm] N = \bruch{0,001\mathrm{g}*6,023*10^{23}}{226\mathrm{g}} = 2,67*10^{18}[/mm]
Damit ist $A = [mm] \lambda*N [/mm] = [mm] 3,68*10^{7}/\mathrm{s} [/mm] $.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:23 Di 02.03.2010 | Autor: | Pille456 |
Ahh ja genau einen solchen Zusammenhang hatte ich vermutet! Danke!
Super :)
|
|
|
|