www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Atom- und Kernphysik" - Atomzerfall Anzahl
Atomzerfall Anzahl < Atom- und Kernphysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Atom- und Kernphysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Atomzerfall Anzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 02.03.2010
Autor: Pille456

Aufgabe
Die Zerfallskonstante des Radiums-226 ist [mm] \lambda_{Ra} [/mm] = [mm] 1,38*10^{-11}*s^{-1}. [/mm] Zu einem bestimmten Zeitpunkt liegt 1mg Radium vor. Wie viele Atome zerfallen innerhalb der nächsten Sekunde?

Hio,

Die Frage seht ihr ja oben. Zur Berechnung sind mit nun 2 Wege bekannt, die wohl auch beide zum richtigen Ergebnis (N = [mm] -3,67*10^7) [/mm] führen sollten. Zumindest einen davon habe ich getestet:
1. Radium 226 hat eine Ordnungszahl von 88 und damit eine Neutronenzahl von 138. Ein Proton hat die Masse [mm] 1,672621637*10^{-27} [/mm] kg, ein Elektron [mm] 9,10938215*10^{-31}kg [/mm] und ein Neutron die Masse [mm] 1,674927211*10^{-27} [/mm] kg
Entsprechend kann man die gesamte Masse eines Ra-226 Atoms berechnen und so herausfinden, wie viel Atome in 1mg enthalten sind. Umrechnen wäre hier zu beachten.
Mit A = [mm] \lambda_{Ra} [/mm] * N lässt sich dann ohne Probleme die Aktivität (= Zerfälle pro Sekunde) berechnen.

2. Etwas "eleganter" bekommt man es mit der Stoffmenge mol hin:
Für Radium gilt: molare Masse = 226,0254 g/mol
N = [mm] \bruch{0,001g*6,023*10^{23}}{226,0254g} [/mm]
Und entsprechend wieder in A = [mm] \lambda_{Ra}*N [/mm] einsetzen.

Mit dem 2. Ansatz kam ich auch auf das richtige Ergebnis, der 1. ist etwas unpraktikabel, da viele Taschenrechner etc. auf Null runden.

So nun zu meiner eigentlichen Frage: Für den 2. Ansatz brauche ich die molare Masse, diese ist in der Aufgabe jedoch nicht gegeben und ich habe sie gerade selber aus dem Internet rausgesucht. Gibt es auch eine Möglichkeit die Aufgabe ohne weitere Angaben zu lösen? (Davon ausgehend, dass wie in Lösung 1 Protonenmasse etc. zwar bekannt sind, aber man diese natürlich nicht auswendig weiss)

        
Bezug
Atomzerfall Anzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Di 02.03.2010
Autor: rainerS

Hallo!

> Die Zerfallskonstante des Radiums-226 ist [mm]\lambda_{Ra}[/mm] =
> [mm]1,38*10^{-11}*s^{-1}.[/mm] Zu einem bestimmten Zeitpunkt liegt
> 1mg Radium vor. Wie viele Atome zerfallen innerhalb der
> nächsten Sekunde?
>  Hio,
>  
> Die Frage seht ihr ja oben. Zur Berechnung sind mit nun 2
> Wege bekannt, die wohl auch beide zum richtigen Ergebnis (N
> = [mm]-3,67*10^7)[/mm] führen sollten. Zumindest einen davon habe
> ich getestet:
>  1. Radium 226 hat eine Ordnungszahl von 88 und damit eine
> Neutronenzahl von 138. Ein Proton hat die Masse
> [mm]1,672621637*10^{-27}[/mm] kg, ein Elektron [mm]9,10938215*10^{-31}kg[/mm]
> und ein Neutron die Masse [mm]1,674927211*10^{-27}[/mm] kg
>  Entsprechend kann man die gesamte Masse eines Ra-226 Atoms
> berechnen und so herausfinden, wie viel Atome in 1mg
> enthalten sind. Umrechnen wäre hier zu beachten.
>  Mit A = [mm]\lambda_{Ra}[/mm] * N lässt sich dann ohne Probleme
> die Aktivität (= Zerfälle pro Sekunde) berechnen.
>  
> 2. Etwas "eleganter" bekommt man es mit der Stoffmenge mol
> hin:
>  Für Radium gilt: molare Masse = 226,0254 g/mol
>  N = [mm]\bruch{0,001g*6,023*10^{23}}{226,0254g}[/mm]
>  Und entsprechend wieder in A = [mm]\lambda_{Ra}*N[/mm] einsetzen.
>  
> Mit dem 2. Ansatz kam ich auch auf das richtige Ergebnis,
> der 1. ist etwas unpraktikabel, da viele Taschenrechner
> etc. auf Null runden.
>  
> So nun zu meiner eigentlichen Frage: Für den 2. Ansatz
> brauche ich die molare Masse, diese ist in der Aufgabe
> jedoch nicht gegeben und ich habe sie gerade selber aus dem
> Internet rausgesucht. Gibt es auch eine Möglichkeit die
> Aufgabe ohne weitere Angaben zu lösen? (Davon ausgehend,
> dass wie in Lösung 1 Protonenmasse etc. zwar bekannt sind,
> aber man diese natürlich nicht auswendig weiss)

Die molare Masse ist in guter Näherung durch die Anzahl der Protonen und Neutronen zu [mm] $88\mathrm{g/mol}+138\mathrm{g/mol}=226\mathrm{g/mol}$ [/mm]  gegeben. Diese Genauigkeit (3 Stellen) ist ausreichend, da auch die Zerfallskonstante nur mit 3 Stellen Genauigkeit angegeben ist.

Damit ist

[mm] N = \bruch{0,001\mathrm{g}*6,023*10^{23}}{226\mathrm{g}} = 2,67*10^{18}[/mm]

Damit ist $A = [mm] \lambda*N [/mm] = [mm] 3,68*10^{7}/\mathrm{s} [/mm] $.

Viele Grüße
   Rainer


Bezug
                
Bezug
Atomzerfall Anzahl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Di 02.03.2010
Autor: Pille456

Ahh ja genau einen solchen Zusammenhang hatte ich vermutet! Danke!
Super :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Atom- und Kernphysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]