www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Atlas Karten
Atlas Karten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Atlas Karten: Sphäre
Status: (Frage) beantwortet Status 
Datum: 00:16 Mi 09.01.2008
Autor: jumape

Aufgabe
Zeigen Sie, dass die Sphäre [mm] S^{n-1}=\{x\in\IR^n, \parallel x \parallel=1\} [/mm] einen Atlas aus zwei Karten besitzt.  

Ich kann leider nicht so viel mit der Aufgabe anfangen, da ich nicht verstanden habe was ein Atlas und Karten sind.

Eine Karte soll doch das Paar Mannigfaltigkeit M und  f sein, oder?
Und ein Atlas ist die minimale Menge der Karten die die Menge abdecken.
Habe ich das richtig verstanden?

Ich kann das leider nicht in die Praxis umsetzen. Mir fehlt da die Vorstellungen davon. Will ich die Menge in einer anderen Dimension darstellen?
Und wenn ich jetzt zwei Karten habe, heißt das dann dass ich ins zweidimensionale gehe oder heißt das dass ich zwei Funktionen habe die in tiefere Dimensionen gehen?

Vielleicht kann mir ja jemand auf die Sprünge helfen.


        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 Mi 09.01.2008
Autor: rainerS

Hallo!

> Zeigen Sie, dass die Sphäre [mm]S^{n-1}=\{x\in\IR^n, \parallel x \parallel=1\}[/mm]
> einen Atlas aus zwei Karten besitzt.
> Ich kann leider nicht so viel mit der Aufgabe anfangen, da
> ich nicht verstanden habe was ein Atlas und Karten sind.
>
> Eine Karte soll doch das Paar Mannigfaltigkeit M und  f
> sein, oder?
> Und ein Atlas ist die minimale Menge der Karten die die
> Menge abdecken.
> Habe ich das richtig verstanden?

Eine Karte ist eine bijektive stetige (bei differenzierbaren Mannigfaltigkeiten: stetig differenzierbare) Abbildung zwischen einer Teilmenge von M und einer Teilmenge des [mm]\IR^n[/mm]. Ein Atlas ist eine Menge von Karten, sodass alle Teilmengen zusammen die gesamte Mannigfaltigkeit ergeben.

> Ich kann das leider nicht in die Praxis umsetzen. Mir fehlt
> da die Vorstellungen davon. Will ich die Menge in einer
> anderen Dimension darstellen?

Nein. Nimm den Fall n=3, also eine Kugeloberfläche. Die Kugeloberfläche selbst ist zweidimensional, daher werden Abbildungen zwischen der Mannigfaltigkeit und dem [mm]\IR^2[/mm] betrachtet. Eine Karte ist anschaulich genau das, was auch ein Geograph darunter versteht: eine Darstellung eines Teils der Kugeloberfläche auf einer ebenen Fläche. Ein Atlas ist eine Kartensammlung, die die gesamte Kugeloberfläche abdeckt.

Man kann sich eine Karte auch so vorstellen, dass man die Mannigfaltigkeit als Gummituch ansieht und versucht, ein stück dieses Tuches über eine ebene Fläche zu ziehen. Bei einem Luftballon geht das nicht, erst wenn man ein Loch reinpiekt, hat man etwas, was man glattziehen kann.

Ebenso sehen wir bei der Erdkugel, dass es keine Karte gibt, die die gesamte Erdkugel darstellt: eine solche Karte hat immer mindestens eine singuläre Stelle, typisch an den Polen, wo der Längengrad keine Bedeutung hat.

> Und wenn ich jetzt zwei Karten habe, heißt das dann dass
> ich ins zweidimensionale gehe oder heißt das dass ich zwei
> Funktionen habe die in tiefere Dimensionen gehen?

Das heisst, dass du zwei Teilmengen der Kugeloberfläche hast, die beide jeweils auf einen Ausschnitt des [mm]\IR^2[/mm] abgebildet werden. Anschaulich: Nord- und Südhalbkugel. Jede für sich lässt sich als ebene Karte darstellen.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Atlas Karten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mi 09.01.2008
Autor: jumape

Vielen Dank erstmal für die Erklärung.

Ich muss also bei meiner Aufgabe die Sphäre in ,,Nord- und Südhalbkugel'' aufteilen. Dafür brauche ich eine Vorschrift, richtig?
Also brauche ich zwei Vorschriften, die jeweils einen Teil und gemeinsam alles abdecken. Aber sind die Kugelkoordinaten nicht schon ausreichend?

[mm] r\in [0,\infty) \phi_1\in[0,2\pi] [/mm] und [mm] \phi_2,\phi_3,...\phi_{n-1} \in [0,\pi) [/mm]

[mm] \vektor{x_1\\ x_2\\ x_3\\ .\\.\\.\\x_{n-2}\\x_{n-1}\\x_{n}} [/mm] = [mm] \vektor{rsin\phi_1sin\phi_2.......sin\phi_{n-1}\\rcos\phi_1sin\phi_2......sin\phi_{n-1}\\rcos\phi_2sin\phi_3....sin\phi_{n-1}\\.\\.\\.\\rcos\phi_{n-3}sin\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-1}} [/mm]

Oder brauche ich die Zylinderkoordinaten, weil ich ja nur die Oberfläche berechnen will?

Ich habe die folgende Lösung im Skript gefunden: [mm] \bruch{n\pi^{\bruch{n}{2}}}{\Gamma(1+\bruch{n}{2})} [/mm]

Stimmt das? Ich habe leider keinen Ansatz wie man darauf kommt.

Es wäre nett wenn mir da nochmal jemand helfen könnte.

Bezug
                        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Mi 09.01.2008
Autor: rainerS

Hallo!

> Ich muss also bei meiner Aufgabe die Sphäre in ,,Nord- und
> Südhalbkugel'' aufteilen. Dafür brauche ich eine
> Vorschrift, richtig?
> Also brauche ich zwei Vorschriften, die jeweils einen Teil
> und gemeinsam alles abdecken. Aber sind die
> Kugelkoordinaten nicht schon ausreichend?

Nein, denn Kugelkoordinaten decken nicht die gesamte Sphäre ab; in mindestens einem Punkt ist die Abbildung nicht bijektiv.

> [mm]r\in [0,\infty) \phi_1\in[0,2\pi][/mm] und [mm]\phi_2,\phi_3,...\phi_{n-1} \in [0,\pi)[/mm]
>  
> [mm]\vektor{x_1\\ x_2\\ x_3\\ .\\.\\.\\x_{n-2}\\x_{n-1}\\x_{n}}[/mm] =[mm]\vektor{rsin\phi_1sin\phi_2.......sin\phi_{n-1}\\rcos\phi_1sin\phi_2......sin\phi_{n-1}\\rcos\phi_2sin\phi_3....sin\phi_{n-1}\\.\\.\\.\\rcos\phi_{n-3}sin\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-2}sin\phi_{n-1}\\rcos\phi_{n-1}}[/mm]

In dieser Parametrisierung ist die Abbildung im Punkt mit [mm]\phi_{n-1}=0[/mm], also am Nordpol nicht bijektiv.

Du musst also eine andere wählen, zum Beispiel in der der Südpol nicht Teil der Karte ist.

Ich weiß nicht, wie weit du den Beweis treiben musst; also ob du wirklich ausrechnen musst, wie der Kartenwechsel in Formeln aussieht (das macht keinen Spaß ;-)).

> Oder brauche ich die Zylinderkoordinaten, weil ich ja nur
> die Oberfläche berechnen will?

Wieso willst du die Oberfläche berechnen? Ich dachte, du sollst nur zeigen, dass ein einen Atlas mit zwei Karten gibt und keinen mit nur einer Karte?

Viele Grüße
   Rainer

Bezug
                                
Bezug
Atlas Karten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 11.01.2008
Autor: maddhe

Hi! Ich sitz grad auch dran..

Die Idee hinter der Sache hab ich verstanden, nur haben wir das in der Vorlesung mim [mm] \IR^{3} [/mm] gemacht und da konnte man mit nem Trick die Umkehrfunktion zur Stereographischen Projektion (von Süd- und Nordpol auf die Ebenen [mm] x_3=-1 [/mm] und [mm] x_3=1: \varphi_1\vektor{x_1 \\ x_2 \\ x_3}=\vektor{\bruch{x_1}{1-x_3} \\ \bruch{x_2}{1-x_3} \\ -1} [/mm] bzw. [mm] \varphi_2\vektor{x_1 \\ x_2 \\ x_3}=\vektor{\bruch{x_1}{1+x_3} \\ \bruch{x_2}{1+x_3} \\ 1} [/mm] )
anwenden, sodass man die explizit ausrechnen konnte:  [mm] y_1^{2}+y_2^{2}=\bruch{x_1^{2}+x_2^{2}}{(1-x_3)^{2}}=...=-1+\bruch{2}{1-x_3}\Rightarrow x_3=1-\bruch{2}{1+y_1^{2}+y_2^{2}} [/mm] Das Problem: im [mm] \IR^{n} [/mm] geht das nicht mehr so leicht: [mm] \summe_{i=1}^{n-1}y_i=\bruch{\summe_{i=1}^{n-1}x_i}{1-x_n}=\bruch{1-x_n^{2}}{(1-x_n)^{n}}=...? [/mm]
Und das bekomme ich einfach nicht nach [mm] x_n [/mm] aufgelöst...
Oder muss ich das gar nicht? Der Prof meinte, sei genau dasselbe wie in der Vorlesung, man müsse nur durchhalten und es ausrechnen...

Grüße
M

Bezug
                                        
Bezug
Atlas Karten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Fr 11.01.2008
Autor: Blueman

Hi maddhe,

Ich finde es geht schon genauso wie im Fall [mm] S^2. [/mm]
Bei dir haben sich ein paar Fehler eingeschlichen. Es müsste lauten:

[mm] y_{1}^2+...+y_{n-1}^2 [/mm] =  [mm] \bruch{x_{1}^2+....+x_{n-1}^2}{(1-x_{n})^2} [/mm] = [mm] \bruch{1-x_{n}^2}{(1-x_{n})^2} [/mm] = [mm] \bruch{1+x_{n}}{1-x_{n}} [/mm] = [mm] \bruch{2}{1-x_{n}}-1 [/mm]

Dürfte doch stimmen, oder?

Viele Grüße,
Blueman


Bezug
                                                
Bezug
Atlas Karten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Fr 11.01.2008
Autor: maddhe

autsch^^ ja hast recht... dann funktionierts auch:-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]