www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Asymptoten finden
Asymptoten finden < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Asymptoten finden: Horizontale + vertikale Asympt
Status: (Frage) beantwortet Status 
Datum: 08:12 Di 04.09.2007
Autor: dimmy

Aufgabe
Use a method of your choice to find all horizontal and vertical asymptotes of the function.
Finde eine Methode deiner Wahl um alle horizontalen und vertikalen Asymptoten der Funktion zu finden.

Vorweg: Ich bin momentan als Austauschschülerin in den USA und stecke in einem PreCalculus-Kurs. Für die Schüler ist Asymptoten-Finden Wiederholung, ich habe das noch nie gemacht, müsste wohl eher ins Oberstufenforum, aber wusste nicht, welches Thema das war. Ist jedenfalls nicht leicht, dass zu verstehen, wenn es a) auf Englisch ist und b) alle anderen schon wissen, worum es geht.
Ich brauche bitte bitte jetzt einmal keine Erklärungen, wie das geht, oder doch, ja, aber dazu die Lösungen. In den USA ist das System anders: Die Hausaufgaben werden nicht besprochen, sondern nur eingesammelt und von der Lehrerin korrigiert. Und ich sitze hier jetzt... Neun Stunden Zeitverschiebung, ich werde morgen um 6:30 Uhr nochmal reingucken, das ist dann in Deutschland 15:30 Uhr. Und ich brauch bitte einfach die Antworten weil ich nicht von Anfang an ein leeres Blatt Papier bzw. ein Papier nur mit falschen Antworten abgegeben will.

55. f(x)= [mm] \bruch{x}{x-1} [/mm]


56. q(x)= [mm] \bruch{x-1}{x} [/mm]


57. g(x)= [mm] \bruch{x+2}{3-x} [/mm]


58. q(x)= [mm] 1,5^{x} [/mm]


59. f(x)= [mm] \bruch{x²+2}{x²-1} [/mm]


60. p(x)= [mm] \bruch{4}{x²+1} [/mm]


61. g(x)= [mm] \bruch{4x-4}{x³-8} [/mm]


62. h(x)= [mm] \bruch{2x-4}{x²-4} [/mm]

Danke =)!

        
Bezug
Asymptoten finden: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Di 04.09.2007
Autor: angela.h.b.

Antworten abgegeben will.
>  
> 55. f(x)= [mm]\bruch{x}{x-1}[/mm]
>  
>
> 56. q(x)= [mm]\bruch{x-1}{x}[/mm]
>  
>
> 57. g(x)= [mm]\bruch{x+2}{3-x}[/mm]
>  
>
> 58. q(x)= [mm]1,5^{x}[/mm]
>  
>
> 59. f(x)= [mm]\bruch{x²+2}{x²-1}[/mm]
>  
>
> 60. p(x)= [mm]\bruch{4}{x²+1}[/mm]
>  
>
> 61. g(x)= [mm]\bruch{4x-4}{x³-8}[/mm]
>  
>
> 62. h(x)= [mm]\bruch{2x-4}{x²-4}[/mm]

Hallo,

ganz vorweg: da Du das mit beliebiger Methode machen darfst, kann ich mir sogar vorstellen, daß Du die Funktionen plotten darfst und die Asymptoten ablesen.

---

Senkrechte Asymptoten kannst Du überhaupt nur an solchen Stellen haben, an welchen die Funktion nicht definiert ist.

Daher scheidet 58. q(x)= [mm]1,5^{x}[/mm] sofort aus für eine senkrechte Asymptote.

Bei den anderen Funktionen mußt Du zunächst nach Definitionslücken suchen. Brüche sind ja nicht definiert an Stellen, an denen der Nenner =0 ist.

Ich greife exemplarisch drei Funktionen heraus:

57. g(x)= [mm]\bruch{x+2}{3-x}[/mm]

Hier ist die Funktion für x=3 nicht definiert,

60. p(x)= [mm]\bruch{4}{x²+1}[/mm]

Weil [mm] x^2 [/mm] immer nichtnegativ ist, ist der Nenner stets [mm] \ge [/mm] 1. Also ist diese Funktion an allen Stellen definiert.

62. h(x)= [mm]\bruch{2x-4}{x²-4}[/mm]

[mm] =\bruch{2x-4}{(x-2)(x+2)} [/mm]

Nicht definiert für x=2 und für x=-2.

__

Ich hatte zuvor gesagt, daß an nicht definierten Stellen senkrechte Asymptoten vorliegen können. Rechts und links von diesen Stellen "zischt die Funktion ab" ins Unendliche, positiv oder negativ.

57. g(x)= [mm]\bruch{x+2}{3-x}[/mm]

Hier ist die Funktion für x=3 nicht definiert.
Wenn Du Werte ganz dicht an 3 einsetzt, ist der Zähler nahezu 5, der Nenner hingegen fast 0, sein Kehrwert also riesig. Also geht die Funktion hier gegen [mm] \infty, [/mm] und zwar gegen [mm] -\infty [/mm] auf der rechten Seite der Asymptote und gegen [mm] +\infty [/mm] auf der linken, überleg Dir, warum das so ist.

62. h(x)= [mm]\bruch{2x-4}{x²-4}[/mm]

[mm] =\bruch{2x-4}{(x-2)(x+2)} [/mm]

Nicht definiert für x=2 und für x=-2.

Hier gibt es eine Besonderheit, Du kannst kürzen: h(x)= [mm]\bruch{2x-4}{x²-4}[/mm] [mm] =\bruch{2x-4}{(x-2)(x+2)} =\bruch{2(x-2)}{(x-2)(x+2)} =\bruch{2}{(x+2)} [/mm]

Mit eine ähnlichen Überlegung wie oben hast Du hier eine senkechte Asymptote bei x=-2.

(An der Stelle x=2 hat h(x) nur ein winziges Löchlein im Graphen.)

__

Nun zu den horizontalen Asymptoten.

Die Frage ist die: wenn x sich [mm] \infty [/mm] bzw. [mm] -\infty [/mm] nähert,  gibt es dann einen Wert, an welchen die Funktion immer dichter heranschleicht?

Hier auch exemplarisch drei Funktionen:

> 55. f(x)= [mm]\bruch{x}{x-1}[/mm]

Wenn x immer größer wird, unterscheiden sich Zähler und Nenner fast nicht mehr, die Funktion geht gegen 1.
[mm] Rechnerisch:f(x)=\bruch{x}{x-1}=\bruch{x-1+1}{x-1}=\bruch{x-1}{x-1}+\bruch{1}{x-1}=1+\bruch{1}{x-1} [/mm]

Für sehr große Werte geht der zweite Term gegen 0. Also ist 1 waagerechte Asymptote, sowohl rechts als auch links.

> 58. q(x)= [mm] 1,5^{x} [/mm]

Diese Funktion wächst, wenn Du immer weiter nach rechts gehst, es gibt im Positiven also keine waagerechte Asymptote.

Nun überleg, was mit  negativen x ist:  [mm] 1,5^{-2}= \bruch{1}{1.5^2}, 1,5^{-20}= \bruch{1}{1.5^{20}}, 1,5^{-92}= \bruch{1}{1.5^{92}}. [/mm]   Die Werte nähern sich der 0. Also ist die x-Achse, die Funktion y=0, waagerechte Asymptote.

Ich helfe Dir jetzt noch bei en paar Funktionen bei der Umformung, anhand derer Du ev. horizontale Asyptoten ablesen kannst:

57. g(x)= [mm] \bruch{x+2}{3-x} [/mm] =-( [mm] \bruch{-2-x}{3-x})= [/mm] -( [mm] \bruch{-2-3+3-x}{3-x})=-( \bruch{5}{3-x}+1) [/mm] =-1 - [mm] \bruch{5}{3-x} [/mm]

61. g(x)= [mm][mm] \bruch{4x-4}{x³-8} [/mm]  Überlege Dir hier, daß für große x der Nenner viiiiiiiiiiiiiiiiiiiiel größer ist als der Zähler.

___

Beim Nacharbeiten des Stoffes kann Dir hier sicher jemand behilflich sein, vielleicht auch jemand von den neuen Mitschülern.

Es ist sicher gut, wenn der Lehrer weiß, daß Du das noch gar nicht hattest, von daher wäre ein leeres Blatt doch gar nicht so schlimm.

Vielleicht kannst Du den Lehrer darauf ansprechen, und vielleicht weiß er sogar, welcher Mitschüler Dir helfen könnte.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]