Asymptoten < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
Gibt es immer eine waagrechte bzw. schräge Asymptote bei gebrochen rationale Funktionen ???
|
|
|
|
Hallo dannyfussi,
Man unterscheidet echt und unecht gebrochen-rationale Funktionen:
Ist der Exponent des Summanden mit dem höchsten Exponent der Zählerfunktion kleiner als der Exponent des Summanden mit dem höchsten Exponent der Nennerfunktion, also Zählerexponent < Nennerexponent dann ist f(x) eine echt gebrochen-rationale Funktion.
Ansonsten ist f(x) eine unecht gebrochen-rationale Funktion!
Jede unecht gebrochen-rationale Funktion kann durch Polynomdivision in einen ganzrationalen und einen echt gebrochen-rationalen Anteil zerlegt werden (man erhält die Asymptotenform).
Der ganzrationale Anteil der Asymptotenform ist die Funktion der Asymtote, deren Graph je nach Größe der Differenz der Exponenten der Summanden mit dem höchsen Exponenten von Zähler- und Nennerfuntionen eine Gerade, Parabel, Funktion dritten Grades... bilden kann.
liegt eine unecht gebrochen-rationale Funktion vor, gibt es folgende Möglichkeiten:
1) Zählerexponent = Nennerexponent [mm] \Rightarrow [/mm] Asymptote ist waagerechte Gerade (y=c)
2) Zählerexponent = Nennerexponent +1 [mm] \Rightarrow [/mm] Asymptote ist Gerade mit der Steigung (y=ax+c)
3) Zählerexponent = Nennerexponent +2 [mm] \Rightarrow [/mm] Asymptote ist min. quadratischer Term z.B. Parabel [mm] (y=ax^2+bx+c)
[/mm]
Liegt eine echt gebrochen-rationale Funktion vor (Zählerexponent < Nennerexponent) gilt immer:
Asymptote ist horizontale Gerade (y=0)
Jetzt zu deiner Frage ob gebrochen-rationale Funktionen immer eine Asymptote haben.
Nein, nicht immer es gibt zwar auch noch die sogenannten Polstellen (die übrigens auch Asymptoten sind, aber dann gibt es auch noch die hebbaren Definitionslücken .
1) Sind die Exponenten gleich [mm] \Rightarrow [/mm] hebbare Definitionslücke (nicht auf Abszisse)
2) Ist Zählerexponent größer Nennerexponent
a) -Differenz der Exponenten gerade [mm] \Rightarrow [/mm] hebbare Definitionslücke (sieht aus wie Berührpunkt)
b) -Differenz der Exponenten ungerade [mm] \Rightarrow [/mm] hebbare Definitionslücke (sieht aus wie Schnittpunkt)
habe den Großteil meiner Antwort von der folgenden Internetadresse kopiert:
http://mathenexus.zum.de/html/formelsammlungen/analysis/Gebrochen-RationaleFunktionen.htm
Ich hoffe du kannst was mit meiner Antwort anfangen. Sollten noch Fragen offen sein, schau doch einfach mal auf dieser Homepage nach. Habe nicht alles kopiert
Viele Grüße
Goldaffe
|
|
|
|