www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Arkussinus Gesetz
Arkussinus Gesetz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arkussinus Gesetz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Fr 29.03.2013
Autor: sissile

Aufgabe
Wir haben eingeführt bezüglich der Irrfahrten:
[mm] L_{2n} [/mm] = max [mm] \{ k \le 2n : S_k =0 \} [/mm]
(Zeitpunkt des letzten Besuchs in 0)

Nun hieß es [mm] L_{2n} [/mm] ist diskret Arkussinus verteilt.
[mm] P(L_{2n} [/mm] = n+k) = [mm] P(S_{2n} [/mm] =0) [mm] *P(S_{2n-2k} [/mm] =0)

Als Veranschaulichung was das mit Arcussin zu tun hat:
[mm] P(L_{2n} [/mm] = 2k ) [mm] \cong \frac{1}{\pi \sqrt{k*(n-k)}} [/mm] = 1/n [mm] f(\frac{k}{n}) [/mm]
mit f(x) = [mm] \frac{1}{ \pi \sqrt{x(1-x)}} [/mm]
Daraus sehen wir:
[mm] P(\frac{L_{2n}}{2n} \le [/mm] z)  [mm] \cong \sum_{k:k \le 2n} \frac{1}{n} f(\frac{k}{n}) \cong \int_0^z [/mm] f(x) dx = [mm] \frac{2}{\pi} arcsin(\sqrt{z}) [/mm]
z [mm] \in [/mm] [0,1]

Hallo
Ich weiß [mm] P(S_{2k} [/mm] =0)= [mm] P(S_{2n-1}=1) \cong \frac{1}{\sqrt{ \pi k}} [/mm]
Doch wie folgt daraus: [mm] P(S_{2n} [/mm] =0) [mm] *P(S_{2n-2k} [/mm] =0)= [mm] \cong \frac{1}{\pi \sqrt{k*(n-k)}} [/mm] ??

Nächste SChritt ist klar:
[mm] f(\frac{k}{n}) =\frac{1}{\pi * \sqrt{\frac{k}{n} *(1-\frac{k}{n})}} [/mm] = [mm] \frac{1}{\pi \sqrt{\frac{kn-k^2}{n^2}}} [/mm] = [mm] \frac{n}{\pi*\sqrt{k*(n-k)}} [/mm]

> [mm] P(\frac{L_{2n}}{2n} \le [/mm] z)  [mm] \cong \sum_{k:k \le 2n} \frac{1}{n} f(\frac{k}{n}) \cong \int_0^z [/mm] f(x) dx = [mm] \frac{2}{\pi} arcsin(\sqrt{z}) [/mm]

Ich weiß 0 [mm] \le L_{2N} \le [/mm] 2N
-> normiere mit Division durch 2n sodass die Zufallsvariable zwischen 0 und 1 liegt
Aber die (ungefährt) Gleichungskette verstehe ich nicht wirklich...

EDIT:Irrfahrt Begriffe
Grundraum $ [mm] \Omega [/mm] $ = $ [mm] \{ \omega =(\omega_1 ,.., \omega_N): \omega_i \in \{+1,-1\}, i=1,..,N\} [/mm] $
P-Gleichverteilung
Zuvallsvaribalen $ [mm] X_i(\omega)= \omega_i [/mm] $ ,i=1,..,N
$ [mm] S_k (\omega) [/mm] $ = $ [mm] \sum_{i=1}^k X_i (\omega) [/mm] $
$ [mm] S_o (\omega) [/mm] $ =0 (Startposition)
k-> $ [mm] S_k [/mm] $ heißt einfache Irrfahrt mit N Perioden.

        
Bezug
Arkussinus Gesetz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Sa 30.03.2013
Autor: Gonozal_IX

Hiho,

du kennst doch Ausdrücke der Form:

[mm] $\IP(S_{2k} [/mm] = 0) = [mm] \ldots$ [/mm] für beliebiges [mm] $k\in \IN$! [/mm]

Dann kennst du doch auch den Ausdruck:

[mm] $\IP(S_{2n - 2k} [/mm] = 0) = [mm] \IP(S_{2(n-k)} [/mm] = 0)$.

Ist ja nichts anderes als oben.
Du denkst da wohl einfach zu kompliziert.

[mm] $\IP(S_{2k} [/mm] = 0) * [mm] \IP(S_{2n - 2k} [/mm] = 0)$ ist dann einfach hinschreiben und ein bisschen zusammenfassen.

>  Aber die (ungefährt) Gleichungskette verstehe ich nicht wirklich...

Was verstehst du nicht?

Das erste ist einfach einsetzen von dem, was du davor gemacht hast, nämlich [mm] \IP(L_{2n} [/mm] = 2k) berechen.
Bedenke: [mm] $\IP(L_{2n} \le [/mm] z) = [mm] \summe_{k\le z}\IP(L_{2n} [/mm] = k)$

Das zweite ist einfach der Übergang von der Riemannschen Summe zum Integral für ausreichend Große n (schau dir da nochmal die Definition des Riemann-Integrals über Riemann-Summen an).

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]