www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Arithmetische Folgen
Arithmetische Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arithmetische Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:41 So 02.09.2007
Autor: james54

Aufgabe
Gegeben sind die arithmetischen Folgen [mm] (a_{n}) [/mm] und [mm] (b_{n}). [/mm]
Weisen Sie nach, dass die Folge [mm] (a_{n} [/mm] + k* [mm] b_{n}) [/mm] ebenfalls eine arithmetische Folge ist, wobei k irgendeine reele Zahl sein soll.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
hänge mal wieder an einer Frage, welche für euch sicherlich einfach ist. Leider finde ich nicht einmal einen Ansatz zur Beantwortung der Frage. Irritiert bin ich auch durch den Faktor k, mit dem die Folge [mm] (b_{n} [/mm] multipliziert wird.
Mit dem Ansatz: Neue Folge = [mm] c_{n} [/mm] = [mm] a_{1} [/mm] + [mm] k*b_{1} [/mm] , [mm] a_{2} [/mm] + [mm] k*b_{2}, ...a_{n}+ k*b_{n} [/mm]  komme ich irgendwie nicht weiter.
Bitte helft mir da weiter. Vielen Dank im voraus!
Hans

        
Bezug
Arithmetische Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 So 02.09.2007
Autor: Bastiane

Hallo james54!

> Gegeben sind die arithmetischen Folgen [mm](a_{n})[/mm] und
> [mm](b_{n}).[/mm]
>  Weisen Sie nach, dass die Folge [mm](a_{n}[/mm] + k* [mm]b_{n})[/mm]
> ebenfalls eine arithmetische Folge ist, wobei k irgendeine
> reele Zahl sein soll.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Hallo,
>  hänge mal wieder an einer Frage, welche für euch
> sicherlich einfach ist. Leider finde ich nicht einmal einen
> Ansatz zur Beantwortung der Frage. Irritiert bin ich auch
> durch den Faktor k, mit dem die Folge [mm](b_{n}[/mm] multipliziert
> wird.
>  Mit dem Ansatz: Neue Folge = [mm]c_{n}[/mm] = [mm]a_{1}[/mm] + [mm]k*b_{1}[/mm] ,
> [mm]a_{2}[/mm] + [mm]k*b_{2}, ...a_{n}+ k*b_{n}[/mm]  komme ich irgendwie
> nicht weiter.

Auch wenn du hier nichts Großes gemacht hast - das ist schon mal ein guter Anfang. :-)

Eine arithmetische Folge gedeutet doch einfach, dass die Differenz zweier aufeinanderfolgender Glieder konstant ist. Nennen wir die Differenz der Folgenglieder für die Folge [mm] a_n [/mm] doch einfach [mm] c_1, [/mm] dann haben wir:

[mm] $a_{i+1}-a_i=c_1 \:\forall [/mm] i=1,...,n$

und für die Folge [mm] b_n [/mm] nennen wir es einfach [mm] c_2: [/mm]

[mm] $b_{i+1}-b_i=c_2 \:\forall [/mm] i=1,...,n$

Nun musst du zeigen, dass für [mm] $c_n:=a_n+k*b_n$ [/mm] gilt: [mm] $c_{i+1}-c_i=c_3\:\forall [/mm] i=1,...,n$

wobei [mm] c_3 [/mm] eine beliebige Konstante ist.

Und das zu zeigen ist nun sehr einfach - setze für [mm] c_{i+1} [/mm] und [mm] c_i [/mm] erstmal die Folgenglieder ein, dann kannst du [mm] a_{i+1} [/mm] mit [mm] a_i [/mm] zusammenfassen und dasselbe für b - dafür setzt du dann die Konstanten [mm] c_1 [/mm] und [mm] c_2 [/mm] ein, das k klammerst du vorher noch aus, und dann definierst du nur noch dein [mm] c_3. [/mm] Schaffst du das? :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]