Argument einer komplexen Zahl < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich soll Betrag und Argument einer Komplexen Zahl bestimmen:
z= 1+ [mm] i\wurzel{3}
[/mm]
Der Betrag ist ja 2, das habe ich verstanden, nur wie bestimme ich jetzt das Argument? Ich habe keinerlei Ahnung, nur das das irgendwie mit den Quadranten zusammenhängt.
Wäre über Hilfe dankbar !
|
|
|
|
> Hallo,
> ich soll Betrag und Argument einer Komplexen Zahl
> bestimmen:
> z= 1+ [mm]i\wurzel{3}[/mm]
>
> Der Betrag ist ja 2, das habe ich verstanden, nur wie
> bestimme ich jetzt das Argument? Ich habe keinerlei Ahnung,
> nur das das irgendwie mit den Quadranten zusammenhängt.
Fasse $z$ einfach als einen Vektor auf, der vom Punkt $0$ der komplexen Zahlenebene zum Punkt $z$ führt. Dessen Länge ist also [mm] $\sqrt{\Re^2(z)+\Im^2(z)}=\sqrt{1+3}=2$ [/mm] und sein Argument ist der Winkel, den er mit der positiven Richtung der reellen Zahlenachse einschliesst. Also, wie Du leicht an einem geeigneten rechtwinkligen Dreieck ablesen kannst, der Winkel [mm] $\tan^{-1}\frac{\Im(z)}{\Re(z)}=\tan^{-1}\frac{\sqrt{3}}{1}=\tan^{-1}\sqrt{3}=\frac{\pi}{3}$.
[/mm]
Nachtrag (Revision 1): Wegen eines kleinen Fehlers habe ich versucht, beim Senden im letzten Augenblick die Notbremse zu ziehen - was nun leider dazu geführt hat, dass ein Duplikat meiner Antwort entstanden ist.
|
|
|
|
|
> Hallo,
> ich soll Betrag und Argument einer Komplexen Zahl
> bestimmen:
> z= 1+ [mm]i\wurzel{3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
>
> Der Betrag ist ja 2, das habe ich verstanden, nur wie
> bestimme ich jetzt das Argument? Ich habe keinerlei Ahnung,
> nur das das irgendwie mit den Quadranten zusammenhängt.
Fasse $z$ einfach als einen Vektor auf, der vom Punkt $0$ der komplexen Zahlenebene zum Punkt $z$ führt. Dessen Länge ist also $\sqrt{\Re^2(z)+\Im^2(z)}=\sqrt{1+3}=2$ und sein Argument ist der Winkel, den er mit der positiven Richtung der reellen Zahlenachse einschliesst. Also, wie Du leicht an einem geeigneten rechtwinkligen Dreieck ablesen kannst, der Winkel $\tan^{-1}\frac{\Im(z)}{\Re(z)}=\tan^{-1}\frac{\sqrt{3}}{1}=\tan^{-1}\sqrt{3}=\frac{\pi}{3$.
|
|
|
|