www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Arcustangens-Gleichung
Arcustangens-Gleichung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Arcustangens-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:24 Mi 11.08.2010
Autor: MattiJo

Hallo,

wie komme ich am geschicktesten zur Lösung folgender Phasengleichung?

[mm] -arctan(\bruch{\omega}{40}) [/mm] - [mm] 0,8\omega [/mm] - [mm] \bruch{\pi}{2} [/mm] = -125°

Danke schonmal an alle, die mir helfen ;)

        
Bezug
Arcustangens-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Mi 11.08.2010
Autor: fred97


> Hallo,
>  
> wie komme ich am geschicktesten zur Lösung folgender
> Phasengleichung?
>  
> [mm]-arctan(\bruch{\omega}{40})[/mm] - [mm]0,8\omega[/mm] - [mm]\bruch{\pi}{2}[/mm] =
> -125°
>  
> Danke schonmal an alle, die mir helfen ;)


Du hast eine Gl. der Form

              $arctan(r*x) = -x+a$

Solche gleichungen lassen sich nicht explizit auflösen. Bemühe ein numerisches Näherungsverfahren

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]