Approximation mittels DFT < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Mo 22.07.2013 | Autor: | Uzaku |
Aufgabe | Wählen sie eine primitive 4. Einheitswurzel w. Das Polynom p(x) = [mm] a_0 [/mm] + [mm] a_{1}x [/mm] + [mm] a_2x^2 [/mm] + [mm] a_3x^3 [/mm] mit [mm] a_j \in \IC, [/mm] j = 0,1,2,3 ist durch folgende Werte festgelegt p(1)=16, p(w)=-3-i [mm] p(w^2)=6 [/mm] und [mm] p(w^3)=-3+i
[/mm]
Destimmen Sie die Koeffizienten des Polynoms mittels der inversen DFT-Transformation. Führen sie eine Probe durch. |
Edit: Ich hab den Fehler gefunden, das Element der Matrix mit index 2,2 ist nicht [mm] w^3 [/mm] sondern [mm] w^0
[/mm]
Hey,
eigentlich weiß, ich wie man diese Aufgabe lösen müsste, aber mein Ergebnis ist falsch, und ich finde den Fehler nicht.
Hier mein Lösungsweg:
ich habe w = i gewählt, habe also die Punkte: p(1)=16, p(i)=-3-i, p(-1)=6 und p(-i)=-3+i
Nun habe ich die inverse DFT-Matrix aufgestellt : [mm] D_{4, i}^{-1} [/mm] = [mm] \bruch{1}{4}* \pmat{ 1 & 1 & 1 & 1 \\1 & w^3 & w^2 & w\\ 1 & w^2 & w^3 & w^2 \\ 1 & w & w^2 & w^3 } [/mm] = [mm] \bruch{1}{4}* \pmat{ 1 & 1 & 1 & 1 \\1 & -i & -1 & i\\ 1 & -1 & -i & -1 \\ 1 & i & -1 & -i }
[/mm]
nun gillt ja [mm] \vektor{a_0 \\ a_1 \\ a_2 \\ a_3} [/mm] = [mm] D_{4, i}^{-1} [/mm] * [mm] \vektor{y_0 \\ y_1 \\ y_2 \\ y_3} [/mm]
Daraus folgt:
[mm] a_0 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 - 3 - i + 6 - 3 + i) = 4
[mm] a_1 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 + 3i - 1 - 6 - 3i - 1) = 2
[mm] a_2 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 + 3 + i - 6i +3 - i) = 5.5 - i
[mm] a_3 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 - 3i + 1 - 6 + 3i + 1) = 3
daraus ergibt sich also: p(x) = [mm] 4x^3 [/mm] + [mm] 2x^2 [/mm] + (5.5 - i)x + 3
und wenn ich dort die x-Werte aus der Tabelle einsetze kommen nicht die dazugehörigen y werte raus.
Ich suche seit ner h und finde den Fehler nicht. Stimmt was am Weg nicht?
gruß Uzaku
|
|
|