www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Approximation mittels DFT
Approximation mittels DFT < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation mittels DFT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mo 22.07.2013
Autor: Uzaku

Aufgabe
Wählen sie eine primitive 4. Einheitswurzel w. Das Polynom p(x) = [mm] a_0 [/mm] + [mm] a_{1}x [/mm] + [mm] a_2x^2 [/mm] + [mm] a_3x^3 [/mm] mit [mm] a_j \in \IC, [/mm] j = 0,1,2,3 ist durch folgende Werte festgelegt p(1)=16, p(w)=-3-i [mm] p(w^2)=6 [/mm] und [mm] p(w^3)=-3+i [/mm]
Destimmen Sie die Koeffizienten des Polynoms mittels der inversen DFT-Transformation. Führen sie eine Probe durch.




Edit: Ich hab den Fehler gefunden, das Element der Matrix mit index 2,2 ist nicht [mm] w^3 [/mm] sondern [mm] w^0 [/mm]

Hey,
eigentlich weiß, ich wie man diese Aufgabe lösen müsste, aber mein Ergebnis ist falsch, und ich finde den Fehler nicht.
Hier mein Lösungsweg:
ich habe w = i gewählt, habe also die Punkte: p(1)=16, p(i)=-3-i, p(-1)=6 und p(-i)=-3+i

Nun habe ich die inverse DFT-Matrix aufgestellt : [mm] D_{4, i}^{-1} [/mm] = [mm] \bruch{1}{4}* \pmat{ 1 & 1 & 1 & 1 \\1 & w^3 & w^2 & w\\ 1 & w^2 & w^3 & w^2 \\ 1 & w & w^2 & w^3 } [/mm] = [mm] \bruch{1}{4}* \pmat{ 1 & 1 & 1 & 1 \\1 & -i & -1 & i\\ 1 & -1 & -i & -1 \\ 1 & i & -1 & -i } [/mm]

nun gillt ja [mm] \vektor{a_0 \\ a_1 \\ a_2 \\ a_3} [/mm] = [mm] D_{4, i}^{-1} [/mm] * [mm] \vektor{y_0 \\ y_1 \\ y_2 \\ y_3} [/mm]

Daraus folgt:
[mm] a_0 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 - 3 - i + 6 - 3 + i) = 4
[mm] a_1 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 + 3i - 1 - 6  - 3i - 1) = 2
[mm] a_2 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 + 3 + i - 6i +3 - i) = 5.5 - i
[mm] a_3 [/mm] = [mm] \bruch{1}{4} [/mm] * (16 - 3i + 1 - 6 + 3i + 1) = 3

daraus ergibt sich also: p(x) = [mm] 4x^3 [/mm] + [mm] 2x^2 [/mm] + (5.5 - i)x + 3

und wenn ich dort die x-Werte aus der Tabelle einsetze kommen nicht die dazugehörigen y werte raus.
Ich suche seit ner h und finde den Fehler nicht. Stimmt was am Weg nicht?

gruß Uzaku

Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]