www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Approximation Taylor-Funktion
Approximation Taylor-Funktion < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Approximation Taylor-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 10.01.2014
Autor: DRose

Aufgabe
Verwenden Sie die Approximation
[mm] (1+x)^m [/mm] ~ [mm] 1+mx+\bruch{m(m-1)}{2}x^2 [/mm] zur Bestimmung von a) [mm] \wurzel[5]{33} [/mm]

Hallo
Habe neu das Thema Approximationen und Taylor-Formeln aber es hat bis jetzt noch nicht Klick gemacht. Ich verstehe nicht, wie die Wurzel mit der angegebenen Formel benutzen kann. Mir ist klar, dass ich [mm] 33^1/5 [/mm] daraus machen kann, dann habe ich einen Exponenten wie in der Formel, aber ich habe dann ja kein x..? Laut Lösungen sollte der nächste Schritt [mm] 3(1-2/27)^1/3 [/mm] ergeben aber wie komme ich da drauf? Ich verstehe das Prinzip einfach nicht, wie ich mit diesen Wurzeln weiterrechnen muss, könnt ihr mir bitte sagen, wie dies funktioniert?

Freundliche Grüsse
D Rose

        
Bezug
Approximation Taylor-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Fr 10.01.2014
Autor: schachuzipus

Hallo,


> Verwenden Sie die Approximation
> [mm](1+x)^m[/mm] ~ [mm]1+mx+\bruch{m(m-1)}{2}x^2[/mm] zur Bestimmung von a)
> [mm]\wurzel[5]{33}[/mm]
> Hallo
> Habe neu das Thema Approximationen und Taylor-Formeln aber
> es hat bis jetzt noch nicht Klick gemacht. Ich verstehe
> nicht, wie die Wurzel mit der angegebenen Formel benutzen
> kann. Mir ist klar, dass ich [mm]33^1/5[/mm] daraus machen kann,
> dann habe ich einen Exponenten wie in der Formel, aber ich
> habe dann ja kein x..? Laut Lösungen sollte der nächste
> Schritt [mm]3(1-2/27)^1/3[/mm]

Wie soll denn da der Exponent [mm]\frac{1}{3}[/mm] zustande kommen?, das wäre [mm]\sqrt[\red{3}]{\ldots}[/mm]

> ergeben aber wie komme ich da drauf?
> Ich verstehe das Prinzip einfach nicht, wie ich mit diesen
> Wurzeln weiterrechnen muss, könnt ihr mir bitte sagen, wie
> dies funktioniert?

Überlege erstmal, für welche [mm]x[/mm] denn die Binomialreihe überhaupt konvergiert, dann kommst du sicher darauf, wie man [mm]33[/mm] geschickt als Summe schreiben kann:

[mm]33^{1/5}=(\Box\pm\Box)^{1/5}[/mm] ...

>

> Freundliche Grüsse
> D Rose

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]