www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Anzahl der Teiler bis n
Anzahl der Teiler bis n < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl der Teiler bis n: durchschnittliche Anzahl
Status: (Frage) beantwortet Status 
Datum: 23:49 Mi 05.10.2011
Autor: clemenum

Aufgabe
Sei $j [mm] \in \mathbb{N}$ [/mm] und bezeichne $t(j)$ die Anzahl der Teiler von $j$. Bezeichne weiters $t'(n)$ die durchschnittliche Anzahl der Teiler von 1 bis n.
Man zeige nun die Gültigkeit der folgenden Implikation:
t'(n) := [mm] \frac{1}{n}\sum_{i=1}^n [/mm] t(i) [mm] \Rightarrow [/mm] t'(n) =  [mm] \frac{1}{n}\sum_{i=1}^n\left[ \frac{n}{i} \right] [/mm]

Eigentlich scheint dieser Sachverhalt ziemlich klar zu sein, denn:
Sei dazu [mm] $a\in \mathbb{N}$ [/mm] beliebig (aber fest), von welcher wir wissen wollen, wie oft sie durch i teilbar ist. Dann ist doch klar, dass t(i) = a/i, bei i|a gilt. Wenn i nicht a teilt, dann muss man natürlich auf die nächstkleinere ganze Zahl abrunden, also gilt i.A. $t(i) =  [mm] \left[ \frac{a}{i} \right] [/mm] $ . Einsetzten von t(i) in die Prämisse liefert doch sofort die Behauptung.

Es ist doch nichts mehr (wesentliches) zu zeigen. Jedoch wurde die Aufgabe mit (**) versehen (d.h. mittelschwer); dies kann ich nicht nachvollziehen.

Gibt es denn einen exakteren bzw. nicht so anschaulich-intuitiven Beweis dieser Tatsache?

Das ist doch so elemntar, dass man die Argumentationsketten doch nicht mehr weiter logisch zerlegen kann. Wer kann mich widerlegen? ;-)

Würde mich über Hilfe freuen!

        
Bezug
Anzahl der Teiler bis n: Antwort
Status: (Antwort) fertig Status 
Datum: 00:53 Do 06.10.2011
Autor: leduart

Hallo
anscheinend hast du "Anzahl der Teiler von i" nicht verstanden
was ist für dich die anzahl der Teiler von 6, von 7? und was hat die mit [n/i] zu tun ? n>7
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]