www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Anzahl Touren in Z²
Anzahl Touren in Z² < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anzahl Touren in Z²: Lösung
Status: (Frage) beantwortet Status 
Datum: 22:23 Di 12.05.2009
Autor: Held

Aufgabe
Wie viele Touren von (0,0) nach (0,0) gibt es in [mm] \IZ \times \IZ [/mm] mit n Schritten?

Ich habe die Frage in keinem anderem Forum gestellt.

Ich glaube das ist ein bekanntes Problem, habe aber bei Google nix gefunden.
Meine Idee war, alle möglichen Wege zu gehen bis n/2 und von dort aus alle zurück.
Ich hab auch z.B. herausgefunden das es [mm] \vektor{n \\ k} [/mm] Wege gibt um nach (n, n-k) zu kommen,
ohne Wiederholungen wenn ich [mm] \IN \times \IN [/mm] betrachte. Allerdings fehlen mir hierbei alle möglichen
Touren die Wiederholung haben und ich weiß nicht wieviele Möglichkeiten es gibt zurückzugehen.

Kennt jemand eine gute Lösung? Link wär auch toll!

Gruß Held

        
Bezug
Anzahl Touren in Z²: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Di 12.05.2009
Autor: abakus


> Wie viele Touren von (0,0) nach (0,0) gibt es in [mm]\IZ \times \IZ[/mm]
> mit n Schritten?
>  Ich habe die Frage in keinem anderem Forum gestellt.
>  
> Ich glaube das ist ein bekanntes Problem, habe aber bei
> Google nix gefunden.
> Meine Idee war, alle möglichen Wege zu gehen bis n/2 und
> von dort aus alle zurück.
>  Ich hab auch z.B. herausgefunden das es [mm]\vektor{n \\ k}[/mm]
> Wege gibt um nach (n, n-k) zu kommen,
>  ohne Wiederholungen wenn ich [mm]\IN \times \IN[/mm] betrachte.
> Allerdings fehlen mir hierbei alle möglichen
>  Touren die Wiederholung haben und ich weiß nicht wieviele
> Möglichkeiten es gibt zurückzugehen.
>  
> Kennt jemand eine gute Lösung? Link wär auch toll!

Hallo,
ich weiß nicht, ob es hilft: Um von (0|0) nach (0|0) zu kommen, muss man genau so viele Schritte in positive wie in negative x-Richtung gehen (y-Richtung analog).

Lässt sich das Ganze vielleicht induktiv aufbauen?
Nehmen wir an, es gibt x Touren für n Schritte. Wenn ich stattdessen n+2 Schritte machen darf, kann ich an eine beliebige Stelle jedes bisherigen Wegs einen Zusatzschritt einbauen und muss dafür an eine beliebige andere Stelle den entsprechenden Gegenschritt einbauen.
Gruß Abakus

>  
> Gruß Held


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]