Anwendung des Cauchy-Produkts < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:11 Do 28.06.2012 | Autor: | Nogoth |
Aufgabe | Zeigen Sie für k = 0,1,2 mittels des Cauchy-Produkts die Identität [mm] $\forall [/mm] x [mm] \in \mathbb{C}, [/mm] |x|<1: [mm] \left(\frac{1}{1-x}\right)^{1+k} [/mm] = [mm] \sum\limits_{n=0}^{\infty} [/mm] {{n+k} [mm] \choose [/mm] k} [mm] \cdot x^n$ [/mm] und berechnen Sie hiermit [mm] $\sum\limits_{n=1}^{\infty} nx^n$ [/mm] und [mm] $\sum\limits_{n=1}^{\infty} n^2x^n$ [/mm] für $|x|<1$. |
Hallo zusammen! Erster Post und so weiter.
Ich habe alle Aufgaben bis auf die in der es um [mm] $\sum\limits_{n=0}^{\infty} n^2x^n$ [/mm] für $|x|<1$ geht lösen können. PDF ist hier. Leider komme ich seit mehreren Stunden einfach nicht weiter .. mittlerweile wächst mir das ganze Papier das ich schon beschrieben habe über den Kopf und daher hoffe ich das mich jemand hier erleuchten kann.
Ich habe diesen Beitrag im Forum gefunden: Link und bin mal den Schritten die felixf in diesem Post beschrieben hat gefolgt. Ich komme auf [mm] $c_n [/mm] = (n+1) = [mm] \sum\limits_{k=0}^{n} [/mm] 1$ und [mm] $d_n [/mm] = [mm] -\frac{1}{2} \cdot [/mm] (n-2)(n+1) = [mm] \sum\limits_{k=0}^{n}(k-n+1)$. [/mm]
Herleitung:
[mm] $\sum\limits_{n=0}^{\infty} x^n \cdot \sum\limits_{n=0}^{\infty} x^n [/mm] = [mm] \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n} x^k \cdot x^{n-k} [/mm] = [mm] \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n} x^n [/mm] = [mm] \sum\limits_{n=0}^{\infty}x^n\sum\limits_{k=0}^{n}1 [/mm] = [mm] \sum\limits_{n=0}^{\infty}(n+1)x^n$
[/mm]
Und:
[mm] $\sum\limits_{n=0}^{\infty}(n+1)x^n \cdot \sum\limits_{m=0}^{\infty} x^m [/mm] = [mm] \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}x^k\cdot((k-n)+1)\cdot x^{n-k} [/mm] = [mm] \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}x^n\cdot((k-n)+1) [/mm] = [mm] \sum\limits_{n=0}^{\infty}x^n\sum\limits_{k=0}^{n}((k-n)+1) [/mm] = [mm] \sum\limits_{n=0}^{\infty}(-\frac{1}{2}(n-2)(n+1))\cdot x^n$
[/mm]
Wie schon angedeutet habe ich leider keine Ahnung was ich damit anfangen soll.
Die einzige Einsicht die ich noch hatte ist
[mm] $\sum\limits_{n=1}^{\infty} n^2x^n [/mm] = [mm] \sum\limits_{n=0}^{\infty} (n+1)^2x^{n+1} [/mm] = [mm] \sum\limits_{n=0}^{\infty} \left(\sum\limits_{m=0}^{n}1\right)^2x^{n+1} [/mm] = x [mm] \cdot \sum\limits_{n=0}^{\infty} \left(\sum\limits_{m=0}^{n}1\right)^2x^n [/mm] $
Kann ich das verwenden? Ist das Quatsch?
Ich habe schon alle möglichen Umformungen der Summe aus der Aufgabenstellung betrachtet... irgendwie komme ich aber nicht darauf das Produkt welcher zwei Reihen [mm] $\sum\limits_{n=0}^{\infty} n^2x^n$ [/mm] für $|x|<1$ ist. Hilfe? Ich kann gerne noch Ansätze oder was ihr noch wissen wollt abtippen ... ich habe nun nur TeX langsam satt nachdem ich den ersten Teil der Aufgabe abgeschrieben habe..
Danke!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:11 Fr 29.06.2012 | Autor: | Helbig |
Hallo Nogoth,
> Herleitung:
> [mm]\sum\limits_{n=0}^{\infty} x^n \cdot \sum\limits_{n=0}^{\infty} x^n = \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n} x^k \cdot x^{n-k} = \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n} x^n = \sum\limits_{n=0}^{\infty}x^n\sum\limits_{k=0}^{n}1 = \sum\limits_{n=0}^{\infty}(n+1)x^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Richtig! Das heißt, Du hast wie verlangt $\left( \frac 1 {1-x}\right)^2=\sum\limits_{n=0}^{\infty}{ { n+1 \choose 1}x^n$ hergeleitet.
>
> Und:
>
> [mm]\sum\limits_{n=0}^{\infty}(n+1)x^n \cdot \sum\limits_{m=0}^{\infty} x^m = \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}x^k\cdot((k-n)+1)\cdot x^{n-k} = \sum\limits_{n=0}^{\infty}\sum\limits_{k=0}^{n}x^n\cdot((k-n)+1) = \sum\limits_{n=0}^{\infty}x^n\sum\limits_{k=0}^{n}((k-n)+1) = \sum\limits_{n=0}^{\infty}(-\frac{1}{2}(n-2)(n+1))\cdot x^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Dies ist falsch! In der zweiten Summe mußt Du $(k-n)$ durch $(n-k)$ ersetzen! Du solltest doch
$\left( \frac 1 {1-x}\right)^3=\sum\limits_{n=0}^{\infty}{ { n+2 \choose 2}x^n$
herleiten, aber es ist ${ n+2 \choose 2} = \frac {(n+1)(n+2)} 2\ne -\frac{1}{2}(n-2)(n+1))$.
Mit der korrekten Formel bekommst Du
$\left( \frac 1 {1-x}\right)^3=\sum\limits_{n=0}^\infty { n+2 \choose 2}x^n=\frac 1 2 \left(\sum_{n=0}^\infty n^2 x^n + 3\sum_{n=0}^\infty n x^n + 2\sum_{n=0}^\infty x^n\right)$
Und jetzt kannst Du nach $\sum_{n=0}^\infty n^2 x^n$ auflösen und fertig!
Gruß,
Wolfgang
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 23:17 Fr 29.06.2012 | Autor: | Nogoth |
Hallo Helbig!
Vielen Dank für die Hilfe, ich denke ich bin nun auf dem richtigen Weg.
Ich habe also folgendes nun gemacht:
[mm] $\sum\limits_{n=0}^{\infty}(n+1)x^n \cdot \sum\limits_{m=0}^{\infty} x^m [/mm] = [mm] \sum\limits_{n=0}^{\infty}\sum\limits_{m=0}^{n}x^m\cdot ((n-m)+1)\cdot x^{n-m} [/mm] = [mm] \sum\limits_{n=0}^{\infty}x^n\sum\limits_{m=0}^{n}((n-m)+1) [/mm] = [mm] \sum\limits_{n=0}^{\infty} x^n \cdot \frac{1}{2}(n+1)(n+2) =\frac{1}{2} \sum\limits_{n=0}^{\infty}(n^2+3n+2) \cdot x^n [/mm] = [mm] \frac{1}{2} \sum\limits_{n=0}^{\infty}(x^nn^2+3x^nn+2x^n) [/mm] = [mm] \frac{1}{2} \left(\sum\limits_{n=0}^{\infty}x^nn^2 + 3\sum\limits_{n=0}^{\infty}x^nn + 2\sum\limits_{n=0}^{\infty}x^n\right)$\\$ \Leftrightarrow \frac{1}{(1-x)^3} [/mm] = [mm] \frac{1}{2} \left(\sum\limits_{n=0}^{\infty}x^nn^2 + 3\sum\limits_{n=0}^{\infty}x^nn + 2\sum\limits_{n=0}^{\infty}x^n\right)$\\$ \Leftrightarrow \frac{2}{(1-x)^3} [/mm] = [mm] \sum\limits_{n=0}^{\infty}x^nn^2 [/mm] + [mm] 3\sum\limits_{n=0}^{\infty}x^nn [/mm] + [mm] 2\sum\limits_{n=0}^{\infty}x^n$\\$ \Leftrightarrow \frac{2}{(1-x)^3} [/mm] = [mm] \sum\limits_{n=0}^{\infty}x^nn^2 [/mm] + [mm] 3\frac{x}{(1-x)^2} [/mm] + [mm] 2\frac{1}{1-x}$\\$ \Leftrightarrow \sum\limits_{n=0}^{\infty}x^nn^2 [/mm] = [mm] \frac{2(1-x)^3 - 2(1-x)^5 - 3x(1-x)^4}{(1-x)^6} [/mm] = [mm] -\frac{x(x+1)}{(x-1)^3}$
[/mm]
Stimmt das so? Man entschuldige die LaTeX Formatierung ... ich sehe da grade nicht mehr so recht durch :)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:17 Sa 30.06.2012 | Autor: | Helbig |
Gruß,
Wolfgang
|
|
|
|