www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Anwendung Cantelli-Ungleichung
Anwendung Cantelli-Ungleichung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendung Cantelli-Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:39 So 05.01.2020
Autor: sancho1980

Hallo

ich stehe grad auf dem Schlauch: In meinem Buch wird die Cantelli-Ungleichung

P(X - E(X) [mm] \ge [/mm] c) [mm] \le \bruch{Var(X)}{Var(X) + c^2}, [/mm] c [mm] \ge [/mm] 0

hergeleitet und dann geschrieben:

"Als kleine Anwendung können wir festhalten, dass der Fall c = [mm] \wurzel{Var(X)} [/mm] zeigt, dass der Median im Intervall [E(X) - [mm] \wurzel{Var(X)}, [/mm] E(X) + [mm] \wurzel{Var(X)}] [/mm] liegen muss."

Ich kann verstehen, dass mit

P(X - E(X) [mm] \ge \wurzel{Var(X)}) \le \bruch{Var(X)}{Var(X) + Var(X)} [/mm] = [mm] \bruch{1}{2} [/mm]

auch

P(X [mm] \ge [/mm] E(X) + [mm] \wurzel{Var(X)}) \le \bruch{1}{2} [/mm]

gilt. Aber wie kann ich jetzt noch zeigen, dass auch gilt:

P(X [mm] \le [/mm] E(X) - [mm] \wurzel{Var(X)}) \le \bruch{1}{2} [/mm]

?

        
Bezug
Anwendung Cantelli-Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 So 05.01.2020
Autor: Gonozal_IX

Hiho,

betrachten wir die ZV $Y = -X$, dann ist $E[Y] = -E[X], [mm] \text{Var}(Y) [/mm] = [mm] \text{Var}(X)$ [/mm] und wir erhalten:

[mm] $P\left(X \le E(X) - \wurzel{Var(X)}\right) [/mm] = [mm] P\left(-X \ge -E(X) + \wurzel{Var(X)}\right) [/mm] = [mm] P\left(Y - E[Y] \ge \wurzel{Var(Y)}\right) \le \frac{1}{2}$ [/mm]

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]