www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertprobleme
Anfangswertprobleme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertprobleme: Aufgaben
Status: (Frage) überfällig Status 
Datum: 09:49 Mi 14.10.2009
Autor: babapapa

Aufgabe
Folgende AWP sind auf Lösbarkeit und Eindeutigkeit zu analysieren. Überprüfe die Lipschitzbedingung.
a) y' = [mm] \wurzel{|y|}, [/mm] y(0) = 0
b) y' = -sgn(y) [mm] \wurzel{|y|}, [/mm] y(0) = 0
c) y' = [mm] \begin{cases} 1 + \wurzel{y}, & \mbox{für } y >= 0 \\ 1, & \mbox{für } y < 0\end{cases}, [/mm] y(0) = 0

Hallo!

Ich habe mich an der ersten aufgabe versucht:

Existenz von Lösungen:
Satz von Peano:

Voraussetzung: Rechte Seite stetig
Dies ist erfüllt, da die Wurzelfunktion und die Betragsfunktion stetig sind. Außerdem ist die Hintereinanderausführung von stetigen Funktionen wieder stetig.

Satz von Picard Lindelöf
VOR: Rechte Seite stetig und [mm] \exists [/mm] Lipschitzkonstante
BEH: [mm] \exists^1 [/mm] Lösung in R'

z.z. [mm] |f(x,y_1) [/mm] - [mm] f(x,y_2)| \le [/mm] L * [mm] |y_1 [/mm] - [mm] y_2| \forall (x,y_1)(x,y_2) \in [/mm] R
(mit L > 0)

also [mm] |\wurzel{|y_1|} [/mm] - [mm] \wurzel{|y_2|}| \le [/mm] L * [mm] |y_1 [/mm] - [mm] y_2| [/mm]

L [mm] \not \exists [/mm] wegen Gegenbeispiel

sei [mm] y_1 [/mm] = [mm] 4/(16*L^2) [/mm]
sei [mm] y_2 [/mm] = [mm] 1/(16*L^2) [/mm]


[mm] |\wurzel{|y_1|} [/mm] - [mm] \wurzel{|y_2|}| \ge (|y_1| [/mm] - [mm] |y_2|)/(\wurzel{|y_1|} [/mm] - [mm] \wurzel{|y_2|}) [/mm] = 4/3 L * [mm] |y_1 [/mm] - [mm] y_2| \ge [/mm] L * [mm] |y_1 [/mm] - [mm] y_2| [/mm]

=> es existiert kein L => Lösung nicht eindeutig.


Bei b) und c) stehe ich etwas an - ich weiß nicht wie man hier vorgeht. In b) existiert wohl wieder eine Lösung - weil Wurzel und signum Funktion stetig sind. selbiges gilt für c). Aber die restlichen Bedingungen bekomme ich nicht hin.

bitte um hilfe.
danke


        
Bezug
Anfangswertprobleme: Aufgabe b
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:56 Mi 14.10.2009
Autor: Al-Chwarizmi


>  b) y' = -sgn(y) [mm]\wurzel{|y|},[/mm] y(0) = 0

> In b) existiert wohl wieder eine Lösung -
> weil Wurzel und signum Funktion stetig sind.


Die Signumfunktion für sich gesehen ist natürlich
bei x=0 nicht stetig, das Produkt

     [mm] -sgn(y)*\wurzel{|y|} [/mm]

aber schon.

Eine Lösung gibt es bestimmt, nämlich die
Nullfunktion. Das ist aber vermutlich nicht
die einzig mögliche. Ich denke, dass es im
Bereich [mm] x\ge0 [/mm] drei Lösungskurven gibt:

1.) die aus Aufgabe (a)
2.) die dazu spiegelbildliche (an der x-Achse
    gespiegelt)
3.) die Nullfunktion (=x-Achse)

LG
        

Bezug
        
Bezug
Anfangswertprobleme: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 15.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]