www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Di 29.04.2008
Autor: bluescience

Aufgabe
x'(t) = x(t) + cost

x(0) = 1

Hallo,

ich habe versucht, die Differentialgleichung mit dem Anfangswertproblem zu lösen und bin auch zu einem Ergebnis gelangt.
So ein ganz gutes Gefühl habe ich dabei aber nicht, weil ich allgemein  mit Differentialgleichungen nicht so sicher bin.
Ich schreibe meinen Lösungsweg einafch mal auf:

[tex]dx/dt = x(t) + cos t

dx/x [mm] =\integral_ [/mm] cos t dt

ln x = sin t + C

x = e^sint + C

x(0) = 1

1= e^sint + C
c = -1,718

x = e^sint - 1,718

Könntet ihr mal drübergucken und mir ggf. sagen, wo es bei meienr lösung hängt?

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Di 29.04.2008
Autor: max3000

Neeee, das ist totaler Käse, was du gemacht hast. Das ist kein Produkt, sondern eine Summe auf der rechten Seite, da kannst du keine Trennung der Variablen vornehmen. Das ist eine ganz normale lineare Differentialgleichung. Da löst du das homogene Problem mit:

x'(t)-x(t)=0

Hier genügt Trennung der Variablen, nach umstellen ergibt sich:

[mm] \bruch{dx}{x}=dt [/mm]

Integrieren:

ln(x)=t+c

umstellen:

[mm] x(t)=c'*e^t [/mm] , wobei [mm] c'=e^c, [/mm] also c'>0

Jetzt brauchst du nur noch einen Ansatz um das inhomogene Problem zu lösen, sprich eine geeignete Konstante c' finden. Ich weiß ja nicht, wie das die Physiker so machen. Sagt dir "Variation der Konstanten" etwas? Die Ingenieure in unseren technischen Vorlesungen haben von sowas zumindest noch nie was gehört, desswegen bringts glaub ich auch nichts dir das jetzt so vorzurechnen. Wenn du es doch so probieren möchtest, betrachte c' als Funktion von t, also

c'=c'(t)

Jetzt deine inhomogene Lösung [mm] x(t)=c'(t)*e^t [/mm]
differenzieren und in die ursprüngliche Differentialgleichung einsetzen. Wenn du alles richtig gemacht hast, sollte sich einiges wegkürzen und du kannst nach [mm] \bruch{d}{dt}c' [/mm] umstellen und nach Integration c' ermitteln.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]