www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 So 21.12.2014
Autor: Rzeta

Aufgabe
Wir suchen Lösungen des Anfangswertproblems (AWP)

y''(x)+2y'(x)+3y(x)=4cos(x), y(0)=-1, y'(0)=1

a) Bestimmen Sie das charaktieristische Polynom der homogenen gewöhnlichen Differentialgleichung y''+2y'+3y=0 sowie dessen Nullstellen.  Um welchen Typen linearer, homogener GDE zweiter Ordnung hendelt ese sich (Typ1, Typ2 oder Typ 3)

b) Bestimmen Sie eine Basis des Läsungsraums von y''+2y'+3y=0 mit reellwertigen Basisfunktionen. Bestimmen Sie die gesamte Läsungsmenge dieser DGL. Welche Struktur (bzgl. der Vektorraumtheorie) besitz diese?

c) Verwenden Sie den Ansatz [mm] y_0=\gamma_1cos(x)+\gamma_2sin(x) [/mm] um eine Lösung der inhomogenen DGL y''+2y'+3y=4cos zu finden

d) Wie lauztet die allgemeine Lösungsmenge der inhomogenen DGL y''+2y'+3y=4cos? Welche Struktur (bzgl. der Vektorraumtheorie) besitzt diese?

e) Lösen Sie das oben gestellte Anfangswertproblem

Hallo,

unser Prof. hat beschlossen mitten in der Linearen Algebra einen Ausflug in die Welt der Differentialgleichungen zu machen. Ich habe das Skript vor mir liegen aber das hätte er genauso gut auf Spanisch drucken können weil absolut kein Wort verstehe. Da kurz vor Weihnachten auch keine Studentenbüros und Studentensprechstunden mehr offen haben wäre ich euch wirklich sehr dankbar wenn Ihr mit mir dieses Problem "durchgehen" könntet. Ich möchte keine Lösung sondern nur verstehen bzw. selber ausrechen was hier verlangt wird.

Ich beginne mal bei a):

Im Skript steht folgendes:

Wir nennen [mm] p(x)=x^2+ax+b [/mm] das charakteristische Polynom. Ist [mm] \lambda [/mm] eine Nullstlle von p, so gilt für die druch [mm] y(x)=e^{\lambda x} [/mm] definierte Funktion

[mm] y''(x)+ay'(x)+by(x)=\lambda^2e^{\lambda x} +a\lambdae^{\lambda x} +be^{\lambda x} =(\lambda^2+\lambda+b)y(x)=0 [/mm]

Ich werde hieraus überhaupt nicht schlau und habe null Ahnung was hier überhaupt gemacht werden soll. Über jegliche Hilfe würde ich mich sehr freuen.

Liebe Grüße

Rzeta



        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 21.12.2014
Autor: fred97

DAs

http://www.fbmn.h-da.de/~ochs/mathe3/skript/dgl2.pdf

hilft Dir weiter

FRED

Bezug
                
Bezug
Anfangswertproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 So 21.12.2014
Autor: Rzeta

Danke! Ich lese es mir gleich durch und hoffe das ich dann die Fragen beantworten kann.

Liebe Grüße

Rzeta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]