www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Andere Def. vom Diffquotient
Andere Def. vom Diffquotient < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Andere Def. vom Diffquotient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:05 Mo 24.06.2013
Autor: Herbart

Hallo,

ich frage mich, ob man den Differentialquotienten auch anders schreiben darf und wenn ja für welche Funktionen.
Für mich wäre es praktischer den Diffquotienten für die h-Methode so zu schreiben:
[mm]\limes_{h\rightarrow 0}\bruch{f(x)-f(x-h)}{h}=f'(x)[/mm]
Darf man das?
Ich habe das ganze mal z.B. für [mm]f(x)=x^3[/mm] durchgespielt:
[mm]\limes_{h\rightarrow 0}\bruch{x^3-(x-h)^3}{h}=...=\limes_{h\rightarrow 0}\bruch{3hx^2-3h^2x+h^3}{h}=3x^2[/mm]
Kann man die obige schreibweise im Allgemeinen beweisen oder nur für gewisse Funktionen? Und wenn ja, für welche?

MfG Herbart


        
Bezug
Andere Def. vom Diffquotient: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 24.06.2013
Autor: Diophant

Hallo,

> Hallo,

>

> ich frage mich, ob man den Differentialquotienten auch
> anders schreiben darf und wenn ja für welche Funktionen.
> Für mich wäre es praktischer den Diffquotienten für die
> h-Methode so zu schreiben:
> [mm]\limes_{h\rightarrow 0}\bruch{f(x)-f(x-h)}{h}=f'(x)[/mm]
> Darf
> man das?

Ja, klar, das darf man tun. Man verschiebt das Steigungsdreieck der Sekante ja nur so, dass der als fest betrachtete Punkt an der rechten Seite liegt und nicht links, wie üblich.

> Ich habe das ganze mal z.B. für [mm]f(x)=x^3[/mm] durchgespielt:
> [mm]\limes_{h\rightarrow 0}\bruch{x^3-(x-h)^3}{h}=...=\limes_{h\rightarrow 0}\bruch{3hx^2-3h^2x+h^3}{h}=3x^2[/mm]

>

> Kann man die obige schreibweise im Allgemeinen beweisen
> oder nur für gewisse Funktionen? Und wenn ja, für
> welche?

Spiele das ganze mal so durch: Bilde den Differenzenquotienten nach h-Methode für die Stelle [mm] x_1=x_0-h, [/mm] dann hast du genau deine Version dastehen.


Gruß, Diophant

Bezug
                
Bezug
Andere Def. vom Diffquotient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:25 Mo 24.06.2013
Autor: Herbart

Vielen Dank für deine Antwort. Du hast mir sehr geholfen!

Schönen Tag!
Herbart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]