www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Analytische Geometrie
Analytische Geometrie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Geometrie: Polyeder:1001 Dreiecksflächen
Status: (Frage) beantwortet Status 
Datum: 13:35 Mi 02.11.2005
Autor: Schabrackentapir

In der Veranstaltung Analytische Geometrie und Lineare Algebra wurde folgende Übungsaufgabe gestellt:

Kann es einen Polyeder geben, der aus 1001 Dreiecksflächen besteht? Beweisen Sie ihre Vermutung.

Ein Polyeder ist ja generell einfach ein dreidimensionaler Vielflächner, so dass es unerheblich ist, dass er etwa kongruent oder konvex ist. In diesen Fällen könnte man sofort einen wie in der Aufgabenstellung geforderten Polyeder ausschließen. Ich habe zwar noch kein Beispiel gefunden, dass ein solcher Polyeder existiert, jedoch bin auch (noch) nicht gewillt, einfach hinzunehmen, dass einen solchen Polyeder (gedanklich) zu konstruieren völlig unmöglich sei. Als "Baumaterial" für dieses Polyeder dienen alle Polyeder, die ausschließlich Dreiecke als Flächen haben. Mir sind dazu nur Tetraeder, Oktaeder und Ikosaeder eingefallen. Gibt es noch mehr Polyeder mit ausschließlich Dreiecken als Seitenflächen? Kann mir jemand weiterhelfen? Verzweifle gerade.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analytische Geometrie: Eulersche Formel
Status: (Antwort) fertig Status 
Datum: 18:56 Mi 02.11.2005
Autor: moudi

Hallo Schabrackentapier

Ich würde es einmal mit der Eulerschen Polyederformel versuchen.

#(Ecken)-#(Kanten)+#(Flächen)=2 oder $E-K+F=2$.

F kennst du, K kannst du dir überlegen und dann wirst du feststellen,
dass es für E keine ganzzahlige Lösung gibt.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]