www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Analytische Funktionen
Analytische Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analytische Funktionen: Frage
Status: (Frage) beantwortet Status 
Datum: 14:31 Mo 18.04.2005
Autor: Bunnyka

Hallo.
Kann mir jemand erklären, wie ich bestimme, ob eine Funktion analytisch ist?
Es handelt sich speziell um foldende Aufgabe:

[mm] f:\IC\setminus \{-i,i\} \rightarrow\IC [/mm]

[mm] f(z):=\bruch{1}{(1+z^2)} [/mm]

Bitte helft mir...
Gruß Bunnyka

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Analytische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Mo 18.04.2005
Autor: Max

Hallo Bunnyka,

dir ein herzliches
[willkommenmr]

Eine Funktion ist doch dann analytisch, wenn sie lokal durch eine Potenzreihe darstellbar ist. Aus der Funktionentheorie kennt man den Satz:

Eine auf  $U$ holomorphe Funktion $f$ ist um jeden Punkt [mm] $z_0\in [/mm] U$ in einer Potenzreihe entwickelbar.

Dabei ist diese Potenzreihe eindeutig durch die Taylorreihe gegeben. Kannst du jetzt damit entscheiden, ob dein Beispiel analytisch ist?

Gruß Max


Bezug
                
Bezug
Analytische Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 18.04.2005
Autor: Bunnyka

Na ja, vom Prinzip versteh ich, was du meinst, aber irgendwie bekomme ich das nicht hin...
ich hab ehrlich gesagt keine ahnung, wie ich von dieser Funktion eine Potenzreihe bilden kann...
wenn mir jetzt noch jemand sagen könnte, wie ich von meiner Funktion eine Pot.reihe bilde, krieg ich das vll hin

Bezug
                        
Bezug
Analytische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 18.04.2005
Autor: Max

Hallo Bunnyka,

du kennst aber die Taylorentwicklung? Die Funktion $f$ ist in

[mm] $f(z)=\sum_{k=0}^{\infty} a_k (z-z_0)^k$ [/mm]

entwickelbar. Die Koeffizienten sind durch $f$ eindeutig bestimmt:

[mm] $a_k=\frac{f^{(k)}(z_0)}{k!}$ [/mm]

Das gilt aber nur, wenn $f$ in einer offenen Umgebung von [mm] $z_0$ [/mm] komplex differenzierbar ist.


Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]