www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Analysis
Analysis < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 19.11.2012
Autor: dolf

Aufgabe
Eine Projektgruppe modelliert ein 12 Meter breites Kanalbett zunächst mit der Funktion h, für die gilt:

h(x) = -2cos $ [mm] (\pi/8\cdot{}x) [/mm] $ +2 für -4 < x < 0
-1cos $ [mm] (\pi/8\cdot{}x) [/mm] $ +1 für 0 < x < 8

Die Wassertiefe wird mit 1,80m an der tiefsten Stelle angenommen.
a) Es ist vorgesehen, dass dieser Kanal von Hausbooten befahren werden soll. Für dieses Boot gelten folgende Daten:
Länge: 12,80m
Breite: 3,20m
Tiefgang: 1,25m
max. Gewicht: 28,5t

Untersuchen Sie, ob solch ein Boot durch den Kanal passt, wenn vereinfachend davon ausgegangen wird, dass der Querschnitt des Bootsrumpfes rechteckig ist und nach unten zum Kanalbett ein Sicherheitsabstand von 20cm eingehalten werden soll.

b) Um zu vermeiden, dass das Erdreich an der linken Kanalseite bis Punkt P abrutscht, darf das Gefälle des Kanalbetts an der steilsten Stelle nicht größer als 0,8 sein. Berechnen Sie diese Stelle und beurteilen Sie, ob diese Vorgabe eingehalten wird.

Habe sehr lange nichts mit Analysis zu tun gehabt, daher auch kein Lösungansatz !
Ich wäre sehr dankbar, wenn jemand Lösungansätze und Denkanstöße bringt!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mo 19.11.2012
Autor: Steffi21

Hallo, zunächst mal die Skizze vom Kanal, blau eingezeichnet die Wassertiefe von 1,80m:

[Dateianhang nicht öffentlich]

die Länge des Bootes ist für die Berechnung uninterssant, mit dem Sicherheitsabstand zum Grund hat das Boot die Form eines Rechteckes mit 3,20m Breite und 1,45m Höhe, beginne mit der Funktion [mm] h(x)=-2*cos(\bruch{\pi}{8}*x)+2, [/mm] berechne die Stelle h(x)=0,35 im Intervall -4<x<0, du weißt 1,45m+0,35m=1,80m, dann
[mm] g(x)=-1*cos(\bruch{\pi}{8}*x)+1, [/mm] berechne die Stelle g(x)=0,35 im Intervall 0<x<8, du weißt 1,45m+0,35m=1,80m,

überprüfe dann ob die Breite von 3,20m ausreicht

gibt es in der Aufgabe b) noch weitere Angaben zum Punkt P?

Steffi




Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]