www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Analyse nach Leontjef
Analyse nach Leontjef < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analyse nach Leontjef: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Do 22.03.2018
Autor: sancho1980

Hallo!

Bei der Input-Output-Analyse nach Leontjef lautet die Formel zur Ermittlung der Produktionsmenge x:

x = (I - [mm] A)^{-1} [/mm] b

I ... Identitätsmatrix
A ... Produktionsmatrix
b ... externe Nachfrage

In meinem Lehrbuch steht weiters dazu:

"Dabei stellen sich zwei Fragen: Wann ist die Matrix (I − A) invertierbar und wann sind alle Koeffizienten der Inversen nichtnegativ? Die letzte Bedingung ist wichtig, da sich für beliebigen Nachfragevektor b mit [mm] b_{j} [/mm] ≥ 0 auch ein Lösungsvektor x mit [mm] x_{j} [/mm] ≥ 0 ergeben muss! Das ist aber genau dann der Fall, wenn alle Koeffizienten der inversen Matrix (I − [mm] A)^{−1} [/mm] nichtnegativ sind."

Irgendwie verstehe ich die letzte Aussage nicht: Wieso müssen alle Koeffizienten von (I − [mm] A)^{−1} [/mm] nichtnegativ sein, damit alle [mm] x_{j} [/mm] >= 0 sind?
Was ist, wenn gilt:

(I − [mm] A)^{−1} [/mm] := [mm] \pmat{ 2 & -1 \\ 1 & 1 } [/mm]
b := [mm] \vektor{1 \\ 1} [/mm]

... dann ist x = [mm] \vektor{1 \\ 2} [/mm]

Also sind alle [mm] x_{j} [/mm] >= 0 obwohl nicht "alle Koeffizienten der inversen Matrix (I − [mm] A)^{−1} [/mm] nichtnegativ sind."

Kann mir da einer helfen?

Gruß und Danke,

Martin

        
Bezug
Analyse nach Leontjef: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Do 22.03.2018
Autor: Gonozal_IX

Hiho,

du hast völlig recht,  dass es zu einzelnen b durchaus Matrizen geben kann, die auch negative Einträge haben. Das war aber nicht die Aussage des Textes. Dort soll sichergestellt werden, dass für beliebige Vektoren b mit nichtnegativen Einträgen ein Lösungsvektor x mit nichtnegativen Einträgen herauskommt.

Oder anders formuliert: für alle b mit nichtnegativen Einträgen.

Und da kann man eben recht schnell zeigen, dass dann auch alle Koeffizienten der invertierten Matrix nichtnegativ sein müssen.

Gruß
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]