www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Analyse eines Regelkreises
Analyse eines Regelkreises < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analyse eines Regelkreises: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 22:55 Fr 20.03.2015
Autor: Huan-Pablo

Aufgabe 1
Der Nachfolgend dargestellte Regelkreis soll analysiert werden
[Dateianhang nicht öffentlich] mit [mm] Gr(s)=\bruch{Y(s)}{E(s)}=Kr*\bruch{1+Tv*s}{1-T*s} [/mm]

a) Geben sie die DGL des Reglers an.

Aufgabe 2
b) Was verbleibt von der DGL im eingeschwungenen zustand? (Bedingung und DGL angeben)
Durch welches Übertragungsglied kann der Regler im eingeschwungenen Zustand beschrieben werden?

Aufgabe 3
c) Zeichnen sie das Blockschaltbild neu für den eingeschwungenen Zustand.
Welche Bedingung muss erfüllt sein damit sich ein eingeschwungener Zustand einstellen kann?

Aufgabe 4
d) Was lässt sich daraus für die verbleibende Regelabweichung [mm] e_{\infty } =e(t\to\infty) [/mm] folgern? (Formel oder Wert für [mm] e_{\infty } [/mm] angeben)

Hallo, hab folgende Aufgaben bekommen und diese auch schon im Techniker Forum gestellt, jedoch keine Antworten enthalten. Möchte euch deshalb einmal bitten ob ihr meine Lösung kontrollieren könnt und mir bei Aufgabe d) helfen könnt. Danke.

Meine Lösungen:
a)
[mm] Gr(s)=\bruch{Y(s)}{E(s)} [/mm] über Kreuz multiplizieren und Rücktransformieren.
T*y'(t)+y(t)=Kr*e(t)+Kr*Tv*e'(t)

b)
Im eingeschwungenen Zustand sind alle Ableitungen Null. So ergibt sich [mm] y(t)=Kr\cdot [/mm] E(t)
Die Bedingung ist, dass das System Stabil ist.
Das Übertragungsglied: P-Glied

c)
[Dateianhang nicht öffentlich]
Bedingung: Es muss ein I-Anteil im Regelkreis vorhanden sein.

d)
Hier weiß ich leider nicht weiter. Kann mir jemand helfen?
Vielen Dank


Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.techniker-forum.de/thema/regelkreis-analyse.98080/

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Analyse eines Regelkreises: Prima
Status: (Antwort) fertig Status 
Datum: 09:15 Sa 21.03.2015
Autor: Infinit

Hallo Huan-Pablo,
willkommen hier im Forum.
Die Teilaufgaben hast Du schon prima gelöst und es fehlt für die d) eine letzte Schlussfolgerung, die Du aber durch die Beantwortung der c) schon angesprochen hast.
Wenn Du Lust hast, rechne Dir mal die Regelabweichung aus für [mm] t \rightarrow \infty [/mm]. Ansonsten gilt der Merksatz alter Regelungstechniker: Sobald sich ein I-Anteil in der Regelstrecke befindet, geht der Regelfehler gegen Null, er wird ausgeregelt, wie man so schön sagt.
Viele Grüße,
Infinit

Bezug
                
Bezug
Analyse eines Regelkreises: Rückfrage
Status: (Frage) überfällig Status 
Datum: 16:24 Sa 21.03.2015
Autor: Huan-Pablo

Danke für die Antwort.
Wie rechnet man denn die verbleibende Regelabweichung aus? Aus meinem Skript bin ich da leider nicht sehr schlau geworden, aber ich hab es auch gerade nicht hier.


Bezug
                        
Bezug
Analyse eines Regelkreises: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 23.03.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]