www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra/Geometrie" - Alpha berechnen
Alpha berechnen < Lineare Algebra/Geom < Zentralabi NRW < VK Abivorbereitungen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Alpha berechnen: Lösung mit Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 20:56 Do 09.08.2007
Autor: KeepCat

Aufgabe
Linie A (1338), B (925) und C (150) sind gegeben
Gesucht wird die Formal für Alpha im Scheitelpunkt:
Pkt 2, mit den Linien A und E

Dreieck 1:
Linie A von Pkt 1: x=0, y=0 zu Pkt 2: x=0, y=1338
Linie B von Pkt 2: x=0, y=1338 zu Pkt 3: x=925, y=1338
Linie E von Pkt 3: x=925, y=1338 zu Pkt 4: x=0, y=233.61
Dreieck 2:
Linie F von Pkt 1: x=0, y=0 zu Pkt 5: x=114.99, y=137,29
Linie C von Pkt 5: x=114.99, y=137,29 zu Pkt 4: x=0, y=233.61

Moin moin, ich hoffe HIER richtig zu sein, da ich unbedingt eine Lösung mit dem Lösungsweg benötige.
Es handelt sich um Geometrie und werde nun anhand von Absolutkordinaten meine zwei Dreiecke darstellen.
Zusätzlich aber noch die Grafik (falls sie aber nicht so gut zu erkennen ist)

[a]Dreiecke.tif

Zusatz Infos, die sich aus der Geometrie ergeben:
Linie E und F sind parallel
Linie C steht senkrecht zu Linie E und F

Alles sieht so leicht aus, mal schnell Alpha zu ermitteln, jedoch verzweifel ich und meine Arbeitskollegen gerade dran.

In der Hoffnung IHR könnt mir helfen.

Gruß und Dank im voraus
Thomas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: tif) [nicht öffentlich]
        
Bezug
Alpha berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Do 09.08.2007
Autor: Steffi21

Hallo,

ich nehme mal an, es ist der Winkel gemeint, der durch Linie A und Linie F gebildet wird.  Du hast schon zwei Nachweise erbracht, sind korrekt,
1. Linie E und Linie F sind parallel,
2. Linie C steht senkrecht auf Linie E und F,

Ich beziehe mich jetzt auf die angehängte Skizze, es entsteht das Dreieck AED, es ist ein rechtwinkliges Dreieck, Winkel [mm] AED=90^{0} [/mm] laut 1. und 2., weiterhin ist [mm] \overline{AD}=233,61 [/mm] bekannt, [mm] \overline{AE} [/mm] kannst Du über den Pythagoras berechnen.

Somit hast Du drei gegebene Stücke im Dreieck AED, damit sollte der Winkel kein Problem mehr sein.

[Dateianhang nicht öffentlich]

Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Alpha berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:21 Do 09.08.2007
Autor: KeepCat

Danke schon mal für deine Bemühungen, ... aber ...
wie ich bereits schrieb, ist NUR A, B und C bekannt.
(Die Koordinaten habe ich nur angegeben, falls das mit der angehängten Datei nicht klappt).

Ich suche nun die Formel: Alpha = [Formel]

Entweder hab ich schon alles vergessen, oder sehe den Wald vor lauter Bäumen nicht, denn trotz aller Bemühungen (Strahlensatz, Winkelfunktionen) bin ich nie auf eine vernünftige Formel gekommen.

Hoffe das ich deine/eure Bemühungen nochmal in Anspruch nehmen kann.

Gruß Thomas

Bezug
                        
Bezug
Alpha berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Do 09.08.2007
Autor: Vreni

Hallo Thomas,
ich hab eine Vorschlag, ich stelle drei Gleichungen auf, die ich so ineinander einsetzte, dass ich nur noch F, A, B und C darin stehen habe (im Folgenden f, a, b, c usw. genannt):
1. d+x=a (offensichtlich)
2. [mm] x^2=f^2+c^2 [/mm] (Pythagoras im kleinen Dreieck)
3. [mm] \frac{d}{b}=\frac{f}{c} [/mm] (Strahlensatz)

Wenn man die zweite Gleichung nach x auflöst und in die erste einsetzt sowie erste und die dritte Gleichung nach d auflöst, erhält man folgende Gleichung:
[mm] a-\sqrt{f^2+c^2}=\frac{fb}{c} [/mm]
Diese Gleichung kann man dann in eine quadratische Gleichung für f umschreiben, die man dann einfach mit der Lösungsformel lösen können müsste:
[mm] a-\frac{fb}{c}=\sqrt{f^2+c^2} [/mm]
[mm] ac-fb=c\sqrt{f^2+c^2} [/mm]
[mm] (ac-bf)^2=c^2(f^2+c^2) [/mm]
[mm] a^2c^2-2abcf+b^2f^2=c^2(f^2+c^2) [/mm]
[mm] (b^2-c^2)f^2-(2abc)f+a^2c^2-c^4=0 [/mm]

Ich hoffe das hat dir geholfen,
Gruß,
Vreni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra/Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]