Allgemeine/Spezielle Lösung < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Geben Sie die allgemeine Lösung von Ax=b an und schreiben Sie die allgemeine Lösung des zugehörigen homogenen Systems auf. Geben Sie eine spezielle Lösung des inhomogenen Systems an. |
A und b sind mir bekannt die Lösung x habe ich auch sowohl für das homogene als auch das imhomogene GLS ermittelt. Meine Frage bezieht sich nun auf den ersten Teilsatz der Aufgabenstellung. Warum ist zweimal nach der allgemeinen Lösung gefragt? Ist die allgemeine Lösung von Ax=b die spezielle Lösung des imhomogenen Systems? Was sind die Unterschiede zwischen den drei geforderten Lösungen? Vielen Dank
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
.
Du hast ein inhomogenes lineare GS Ax=b.
Nun Interessiert man sich für die Lösungsmenge.
In diesem Zusammenhang redet man über Dreierlei:
- die allgemeine Lösung des homogenen Systems, also über die [mm] L_h:=\{x| Ax=0\}
[/mm]
- eine spezielle Lösung des inhomogenen Systems, also über ein einziges [mm] x_s, [/mm] für welches [mm] Ax_s=b [/mm] gilt
- die allgemeine Lösung L des inhomogenen Systems, welche man aus der Summe der speziellen Lösung des inhomogenen und der allgmeinen des homogenen Systems erhält, also [mm] L=x_s [/mm] + [mm] L_h.
[/mm]
Wenn nicht alles klar ist, poste Dein GS und alles, was Du bisher berechnet hast, damit man das am konkreten Beispiel zeigen kann.
Gruß v. Angela
|
|
|
|
|
Danke für die schnelle Antwort, allerdings ist es mir dadurch nicht klarer, was ich tun soll.
Also mein GLS, also die Matrix A, ist:
[mm] \pmat{ -2 & -1 & 2 & -2 & 0 & 0 & 5 & 3 & 0 \\ -2 & -5 & -8 & 1 & 0 & 0 & -9 & -7 & -2 \\ 4 & 14 & 34 & -7 & 0 & 0 & 44 & 32 & 6 \\ 0 & -2 & 1 & -0 & 3 & 0 & 2 & 1 & -1 \\ 3 & 0 & 4 & -1 & 5 & 2 & 6 & 4 & 0} [/mm]
b= [mm] \vektor{1 \\ 1 \\ 2 \\ 3 \\ 2}
[/mm]
Meine Lösung für Ax=0 ist:
[mm] x_{h}=x(s_{1},s_{2},s_{3},s_{4})=\vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}
[/mm]
Meine Lösung für Ax=b ist:
[mm] x=\vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 }+ \vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}
[/mm]
Mir ist nun immer noch nicht klar wie ich auf die geforderte allgemeine lösung komme. Addiere ich einfach beide Ergebnisse(was mir allerdings vollkommen unlogisch erscheint)? Oder ist die spezielle Lösung bereits die allgemeine und gar nicht die spezielle?
Vielen Dank
Simon
|
|
|
|
|
> Danke für die schnelle Antwort, allerdings ist es mir
> dadurch nicht klarer, was ich tun soll.
> Also mein GLS, also die Matrix A, ist:
> [mm]\pmat{ -2 & -1 & 2 & -2 & 0 & 0 & 5 & 3 & 0 \\ -2 & -5 & -8 & 1 & 0 & 0 & -9 & -7 & -2 \\ 4 & 14 & 34 & -7 & 0 & 0 & 44 & 32 & 6 \\ 0 & -2 & 1 & -0 & 3 & 0 & 2 & 1 & -1 \\ 3 & 0 & 4 & -1 & 5 & 2 & 6 & 4 & 0}[/mm]
>
> b= [mm]\vektor{1 \\ 1 \\ 2 \\ 3 \\ 2}[/mm]
Hallo,
das ist ja so groß! Nachrechnen tue ich nichts. ich gehe davon aus, daß Du richtig gerechnet hast.
> Meine Lösung für Ax=0
> ist:
> [mm]x_{h}=x(s_{1},s_{2},s_{3},s_{4})=\vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}[/mm]
das ist die allgemeine Lösung des homogenen Systems.
[mm] \vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 } [/mm] ist eine spezielle Lösung des inhomogenen Systems und
die Summe aus beidem:
> [mm]x=\vektor{0 \\ 3 \\ 0\\-2 \\ 0\\ 0\\ 0\\0 \\ -9 }+ \vektor{s_{4} \\ -7s_{1}-6s_{2}-5s_{3}-2s_{4} \\ s_{2}\\6s_{1}+4s_{2}+4s_{3}\\0\\-3/2s_{4}\\s_{1}\\s_{3} \\16s_{1}+13s_{2}+11s_{3}+4s_{4}}[/mm]
die allgemeine Lösung des inhomogenen Systems.
Gruß v. Angela
|
|
|
|
|
Vielen, vielen Dank! Jetzt ist mir alles klar!!!
|
|
|
|