Allgemeine Parabelgleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:35 Do 30.04.2009 | Autor: | Fuechsl |
Aufgabe | Wie kann die allgemeine Parabelgleichung [mm]Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0[/mm] aus einer Leitlinie [mm]ax + by + c = 0[/mm] und einem Brennpunkt F(u/v) hergeleitet werden?
|
Ich habe rausgefunden, dass [mm]A=a^2[/mm], [mm]C=b^2[/mm] und [mm]B=2ab[/mm] ist, schaffe es aber nicht, D, E und F aus a, b, c, u und v herzuleiten. Ich vermute, es sind irgendwelche Bruchterme. Auch intensive (>2h) Suche im Internet brachten kein Resultat.
Ps. Es ist mir bewusst, dass die Parabelgleichung zusätzlich die Bedingung [mm]4AC - B^2 = 0[/mm] haben muss.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:14 Do 30.04.2009 | Autor: | leduart |
Hallo
Du weisst doch ein Punkt (x,y) der Parabel muss von F und g denselben Abstand haben.
also einfach den (senkrechten) Abstand eine Punktes (x,y) von g ausrechnen und mit dem Abstand zu F gleichsetsen.
Der andere Weg waere die gerade so zu drehen, dass sie parallel zur x-Achse ist und die Ellipse genauso drehen, wenn du die Darstellung der achsenparallelen Ellipse kennst.
da ich deine Vorkenntnisse nicht beurteilen kann musst du dir eins aussuchen.
wie bist du denn auf deine Ergebnisse gekommen?
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 09:22 Do 30.04.2009 | Autor: | Fuechsl |
Hallo leduart,
Danke für die schnelle Antwort. Zuerst meine Antwort auf deine Gegenfrage: Rein experimentell, habe in Geogebra eine Parabel mit Leitliinie und Brennpunkt erstellt und mal ausprobiert, wie sich die Koeffizienten beeinflussen... :) Das war bei A, B und C sehr einfach, bei D, E und F ists einiges komplizierter...
Zu deiner Antwort: Das mit dem drehen des Koordinatensystems dünkt mich recht kompliziert. An den ersten Weg habe ich auch schon gedacht. Habe noch etwas Probleme mit dem Abstand zu einer Gerade, aber das geht glaub über die Hessesche Normalform am einfachsten, nicht?
Doch, wenn ich nochmals darüber nachdenke, sollte ich es glaub nun hinkriegen... mal schauen, hab die H.NF. das letzte mal wohl vor 10 Jahren verwendet... Aber das finde ich sicher im Netz.
Ah, von wegen Vorbildung: Ich bin ausgebildeter Sekundarlehrer (in Deutschland wäre das glaub Reallehrer) und bilde mich gerade in einem Nachdiplomstudium zum Mathedidaktiker weiter (bin bereits etwas als Dozent an einer PH tätig).
Danke vielmals und freundliche Grüsse
Martin
|
|
|
|
|
Hallo Martin,
mit der Hesseschen Abstandsgleichung geht dies vorzüglich,
es gibt nur etwas komplizierte Terme auszumultiplizieren.
Ich erhalte allerdings etwas andere Ausdrücke, z.B.:
$\ A\ =\ [mm] b^2$
[/mm]
$\ B\ =\ [mm] -\,2\,a\,b$
[/mm]
$\ C\ =\ [mm] a^2$
[/mm]
$\ D\ =\ [mm] -2\,\left[(a^2+b^2)\,u+a\,c\,\right]$
[/mm]
LG Al
|
|
|
|