www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Allgemeine Basis
Allgemeine Basis < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Allgemeine Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:57 Mo 18.05.2015
Autor: rsprsp

Aufgabe
Es sei V ein R-Vektorraum, a, b, c ∈ V und x := b + c, y := c + a, z := a + b. Zeigen Sie:
a) span(a, b, c) = span(x, y, z).
b) a, b, c sind genau dann linear unabhängig, wenn x, y, z linear unabhängig sind.
c) Gelten die Aussagen aus (a) und (b) auch für allgemeine Vektorräume?

Bin bei und komme nicht weiter
a)
span(a,b,c) = [mm] {\lambda_{1}a+\lambda_{2}b+\lambda_{3}c} [/mm]
span(x,y,z) = [mm] {\lambda_{1}x+\lambda_{2}y+\lambda_{3}z} [/mm]
= [mm] {\lambda_{1}(b+c)+\lambda_{2}(c+a)+\lambda_{3}(a+b)} [/mm]
= [mm] {\lambda_{1}b+\lambda_{1}c+\lambda_{2}c+\lambda_{2}a++\lambda_{3}a++\lambda_{3}b} [/mm]
[mm] ={a(\lambda_{2}+\lambda_{3})+b(\lambda_{1}+\lambda_{3})+c(\lambda_{1}+\lambda_{2})} [/mm]

Kann mir jemand weiterhelfen ?

        
Bezug
Allgemeine Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 04:34 Di 19.05.2015
Autor: fred97

Aus der Def. von x,y und z folgt sofort:

  $span(x,y,z) [mm] \subseteq [/mm] span(a,b,c).$

Zeige:

  [mm] a=\bruch{1}{2}(-x+y+z), b=\bruch{1}{2}(x-y+z) [/mm]  und   [mm] c=\bruch{1}{2}(x+y-z). [/mm]

Daraus folgt

  $span(a,b,c) [mm] \subseteq [/mm] span(x,y,z).$


FRED




Bezug
                
Bezug
Allgemeine Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:48 Di 19.05.2015
Autor: rsprsp

Aufgabe
a; b; c sind genau dann linear unabhängig, wenn x; y; z linear unabhängig sind.

Kannst du mir auch hier ein Hinweis geben ?

Bezug
                        
Bezug
Allgemeine Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 19.05.2015
Autor: fred97


> a; b; c sind genau dann linear unabhängig, wenn x; y; z
> linear unabhängig sind.
>  Kannst du mir auch hier ein Hinweis geben ?

a,b,c sind linear unabhängig  [mm] \gdw [/mm] dim(span(a, b, c)) = 3

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]