www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - (Allg.) Beweis
(Allg.) Beweis < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:13 Sa 01.12.2007
Autor: engel

Hallo!

Kann man eigentlich beweisen, ganz allgemein, dass wenn f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x) an dieser Stelle ein Maximum hat?

Das würde mich wirklich mal interessieren, auch wenne s kein Schulstoff ist.

        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:38 Sa 01.12.2007
Autor: rainerS

Hallo engel!

> Kann man eigentlich beweisen, ganz allgemein, dass wenn
> f(x) an der Stelle x0 ein Maximum hat, das dann auch f²(x)
> an dieser Stelle ein Maximum hat?

Ein Extremum, ja. Ob Maximum oder Minimum, hängt vom Vorzeichen von [mm]f(x_0)[/mm] ab.

Wenn f(x) ein Maximum hat, hat -f(x) ein Minimum und umgekehrt, aber andererseits ist das Quadrat beider Funktionen gleich: [mm](-f)^2(x)= =f^2(x)[/mm].

Beispiel:
[mm]f(x)=x^4-2*x^2-1[/mm] hat bei [mm]x_0=1[/mm] ein Maximum mit Funktionswert -1.
[mm]f^2(x)=(x^4-2*x^2-1)^2[/mm] hat ein Minimum.

Man kann's auch recht einfach formal nachrechnen.

Viele Grüße
   Rainer

Bezug
                
Bezug
(Allg.) Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 01.12.2007
Autor: engel

Hallo!

f(x) hat ein Maximum dann hat f²(x) an der gleichen stelle ein maximum.

f(x) = x²

f'(x) = 2x

Extremum bei x=0

f²(x) = [mm] x^4 [/mm]

f'(x) = 4x³

Extremum bei x=0

Habe ich das so beweisen?

Bezug
                        
Bezug
(Allg.) Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Sa 01.12.2007
Autor: leduart

Hallo
Nein, 1. [mm] x^2 [/mm] hat bei [mm] x^2 [/mm] kein Max sondern ein Min!
2. ein Beispiel ist kein Beweis:
sonst wäre richtig: alle ungeraden Zahlen sind Primzahlen 3,5,7 stimmt, noch zufällig ne grössere 37 stimmt auch. Beweis fertig.!
Deine Rechnung kann höchstens dich auf die Idee bringen, dass das richtig ist!
Beweis in Worten:
Wenn f(x) ein Max hat UND da einen positiven Wert, sind alle Werte daneben kleiner und auch positiv. dann hat [mm] f^2(x) [/mm] da auch ein Max, denn wenn ne Zahl>0 gilt dass die größere Zahl das grössere Quadrat hat.
Wenn f ein Max hatbei x1, und f(x1)<0, dann hat [mm] f^2(x) [/mm] ein Min, überlkeg selbst warum.
Beweis mit Rechnen:
[mm] (f^2(x))'=2f(x)*f'(x) [/mm]  wenn f'(x)=0 folgt [mm] (f^2(x))'=0 [/mm] also auf jeden Fall hat [mm] f^2 [/mm] auch ne waagerechte Tangente!
Max: f''<0  [mm] (f^2(x))''=2f*f'' [/mm] +2f'^2 an der betrachteten Stelle x1 ist f'(x1)=0
also [mm] f^2(x1))''=2f(x1)f''(x1) [/mm] wenn f(x1)>0 hat [mm] f^2(x1))'' [/mm] dasselbe Vorzeichen wie f''(x1).
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]