www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Algebren
Algebren < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Algebren: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:33 Di 17.05.2005
Autor: studentin

Hallo,
ich komme mit dieser Aufgabe nicht wirklich klar. Hat vielleicht jemand eine Idee wie man die aufgabe am besten löst?
1.
Es seien   [mm] A_{i} \sigma-Algebren [/mm] auf   [mm] c_{i} [/mm] i=1,2, und T:  [mm] c_{1} [/mm] -->  [mm] c_{2} [/mm] eine Abbildung. Zeige:
a) { T^-1 (B): [mm] B\in A_2} [/mm] ist die kleinste [mm] \sigma- [/mm] Algebra A auf [mm] c_1 [/mm] für die T [mm] A/A_2 [/mm] -messbar ist.

b) { [mm] {B\subset c_2 : T^-1(B) \in A_1} [/mm] } ist die größte [mm] \sigma- [/mm] Algebra A´auf [mm] c_2 [/mm] für die T [mm] A_1 [/mm] /A´-messbar ist.

2.)Zeige, dass jede stetige Funktion f:$ [mm] R^d [/mm] $ --> $ [mm] R^d´$ B(IR^d)/B(R^d´)- [/mm] messbar ist.



        
Bezug
Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Di 17.05.2005
Autor: banachella

Hallo!

Um diese Aufgabe zu lösen solltest du dir zunächstmal genau klar machen, was eigentlich [mm] "$\cal{A}/\cal{A}'$-messbar" [/mm] bedeutet! Denn damit $T$ [mm] $\cal{A}/\cal{A}'$-messbar [/mm] ist, muss ja gerade [mm] $T^{-1}(B)\in\cal{A}_1$ [/mm] liegen für alle [mm] $B\in \cal{A}'$... [/mm]
Hast du denn schon einen Lösungsansatz? Poste doch mal was du hast, dann helfen wir dir gerne weiter!

Gruß, banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]