www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Affinität konstruieren
Affinität konstruieren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affinität konstruieren: Idee
Status: (Frage) beantwortet Status 
Datum: 21:35 So 14.06.2009
Autor: klaeuschen

Aufgabe
Sei V [mm] \subseteq \IR^{3} [/mm] der affine Unterraum [mm] x_{1}+x_{2}-x_{3}=2 [/mm] und W [mm] \subseteq \IR^{4} [/mm] der affine Unterraum [mm] x_{1}-x_{3}+2x_{4}=1, x_{1}-x_{2}+x_{3}-x_{4}=-1. [/mm] Konstruieren Sie eine Affinität von W nach V.

Hallo matheraum!

Diese Aufgabe macht mir ganz schön zu schaffen.
Ich muss also eine Abbildung konstruieren, die die Elemente aus dem [mm] \IR^{4}, [/mm] die die zwei Gleichungen erfüllen, in den [mm] \IR^{3} [/mm] abbildet, wobei die erste Gleichung erfüllt sein muss.
Kann mir jemand helfen wie ich dazu vorgehen muss?

Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Affinität konstruieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:57 So 14.06.2009
Autor: klaeuschen

kann mir denn keiner helfen???

Bezug
                
Bezug
Affinität konstruieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 So 14.06.2009
Autor: angela.h.b.


> kann mir denn keiner helfen???

Hallo,

diese Frage nach noch nichtmal [mm] 1\bruch{1}{2} [/mm] Stunden ist  etwas übertrieben, oder?

Was soll das?

Gruß v. Angela



Bezug
        
Bezug
Affinität konstruieren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:38 So 14.06.2009
Autor: angela.h.b.


> Sei V [mm]\subseteq \IR^{3}[/mm] der affine Unterraum
> [mm]x_{1}+x_{2}-x_{3}=2[/mm] und W [mm]\subseteq \IR^{4}[/mm] der affine
> Unterraum [mm]x_{1}-x_{3}+2x_{4}=1, x_{1}-x_{2}+x_{3}-x_{4}=-1.[/mm]
> Konstruieren Sie eine Affinität von W nach V.
>  Hallo matheraum!
>  
> Diese Aufgabe macht mir ganz schön zu schaffen.
>  Ich muss also eine Abbildung konstruieren, die die
> Elemente aus dem [mm]\IR^{4},[/mm] die die zwei Gleichungen
> erfüllen, in den [mm]\IR^{3}[/mm] abbildet, wobei die erste
> Gleichung erfüllt sein muss.
>  Kann mir jemand helfen wie ich dazu vorgehen muss?

Hallo,

ob man das muß, weiß ich nicht, aber meiner Vorstellungskraft würde es sehr auf die Sprünge helfen, wenn ich mir die beiden Räume  erstmal gescheit aufschreiben würde:

es sind ja Lösungsräume von linearen Gleichungssystemen.

es ist [mm] W=\vektor{1\\2\\0\\0}+<\vektor{1\\2\\1\\0}, \vektor{2\\3\\0\\-1}>, [/mm]

V kannst Du entsprechend schreiben.

Vielleicht kommst Du damit schon etwas weiter.

Wenn nicht, dann schreib auf, wie weit Du gekommen bist, und sag' am beten auch noch, wie Affinität definiert ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]