www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Affine Linearkombinationen
Affine Linearkombinationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affine Linearkombinationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Mo 30.04.2007
Autor: BJJ

Hallo,

ich habe eine Frage zu affinen Linearkombinationen. Die formale Definition sieht ja so aus. Sei der [mm] R^n [/mm] der Euklidische Raum mit Standard-Skalarprodukt.

Wir sagen, ein Punkt x ist affine Linearkombination der Vektoren [mm] x_1, [/mm] ..., [mm] x_k [/mm] wenn es Zahlen [mm] a_1, [/mm] ..., [mm] a_k [/mm] gibt, s.d. gilt

(i) x = [mm] a_1 x_1 [/mm] + ... + [mm] a_k x_k [/mm]

(ii) [mm] a_1 [/mm] + ... + [mm] a_k [/mm] = 1.


Wie schreibt man Eigenschaft (ii) eigentlich hin, wenn man nicht das Standard-Skalarprodukt betrachtet, sondern ein beliebiges Skalarprodukt, so dass die ueblichen Saetze weiterhin gelten?

Etwa

(ii') <a, u> = 1,

wobei  a= [mm] (a_1, [/mm] ..., [mm] a_k), [/mm] u = (1, ..., 1) und <.,.> irgend ein Skalarprodukt ist?

Beste Gruesse

bjj

        
Bezug
Affine Linearkombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mo 30.04.2007
Autor: leduart

Hallo
> Hallo,
>  
> ich habe eine Frage zu affinen Linearkombinationen. Die
> formale Definition sieht ja so aus. Sei der [mm]R^n[/mm] der
> Euklidische Raum mit Standard-Skalarprodukt.
>
> Wir sagen, ein Punkt x ist affine Linearkombination der
> Vektoren [mm]x_1,[/mm] ..., [mm]x_k[/mm] wenn es Zahlen [mm]a_1,[/mm] ..., [mm]a_k[/mm] gibt,
> s.d. gilt
>  
> (i) x = [mm]a_1 x_1[/mm] + ... + [mm]a_k x_k[/mm]

du liest das als skalarprodukt eines Vektors a mit dem vektor x. formal ist das hier dasselbe, aber (i) gilt allgemein, d.h. es sind einfach die [mm] a_i [/mm] reelle Zahlen,
deshalb hat es nix direkt mit skalarprod. zu tun, du musst das nicht mal kennen um einen affinen Unterraum herzustellen!
also bleiben (i) und (ii) einfach dasselbe.
Gruss leduart

>  
> (ii) [mm]a_1[/mm] + ... + [mm]a_k[/mm] = 1.
>  
>
> Wie schreibt man Eigenschaft (ii) eigentlich hin, wenn man
> nicht das Standard-Skalarprodukt betrachtet, sondern ein
> beliebiges Skalarprodukt, so dass die ueblichen Saetze
> weiterhin gelten?
>  
> Etwa
>
> (ii') <a, u> = 1,
>
> wobei  a= [mm](a_1,[/mm] ..., [mm]a_k),[/mm] u = (1, ..., 1) und <.,.> irgend
> ein Skalarprodukt ist?
>
> Beste Gruesse
>  
> bjj  


Bezug
                
Bezug
Affine Linearkombinationen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mo 07.05.2007
Autor: BJJ

Hallo Leduart,

danke fuer Deine Antwort. Alles klar nun, bei mir.

Beste Gruesse

j

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]