www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Admittanz komplexe Funktion
Admittanz komplexe Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Admittanz komplexe Funktion: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 21:00 Mo 18.11.2013
Autor: Coxy

Aufgabe
Für die Admittanz Y einer Parallelschaltung eines Kondensators und eines Wiederstandes R gilt: [mm] Y=\bruch{1}{R}+i \omega [/mm] C, wobei [mm] \omega [/mm] die Kreisfrequenz [mm] (\omega \ge [/mm] 0) ist. Ferner gilt für die Impedanz Z: [mm] Z=\bruch{1}{Y}. [/mm] Bestimmen Z [mm] (\omega) [/mm] und skizziere sowohl [mm] Y(\omega) [/mm] als auch [mm] Z(\omega). [/mm] Kennzeichne hierbei jeweils die Punkte für [mm] \omega=0 [/mm] und [mm] \omega [/mm] -> [mm] \infty. [/mm] Für welchen Wert von [mm] \omega, [/mm] ist der Imaginär-Teil der Impedanz minimal? Welchen Wert hat die Impedanz an dieser Stelle?

Ich wollte zunächst [mm] Z(\omega) [/mm] bestimmen.
Deswegen habe ich zunächst mein Y in das Z eingesetzt
[mm] Z=\bruch{1}{\bruch{1}{R}+i \omega C} [/mm]
was mich ja noch nicht vorangebracht hat.
Leider habe ich keine genaue Ahnung wie ich [mm] Z(\omega) [/mm] bestimmen kann.
Könnte mir da vielleicht jemand einen kleinen Tipp geben?

        
Bezug
Admittanz komplexe Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Mo 18.11.2013
Autor: leduart

Doppelpost, warum?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]