Admittanz komplexe Funktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) für Interessierte | Datum: | 21:00 Mo 18.11.2013 | Autor: | Coxy |
Aufgabe | Für die Admittanz Y einer Parallelschaltung eines Kondensators und eines Wiederstandes R gilt: [mm] Y=\bruch{1}{R}+i \omega [/mm] C, wobei [mm] \omega [/mm] die Kreisfrequenz [mm] (\omega \ge [/mm] 0) ist. Ferner gilt für die Impedanz Z: [mm] Z=\bruch{1}{Y}. [/mm] Bestimmen Z [mm] (\omega) [/mm] und skizziere sowohl [mm] Y(\omega) [/mm] als auch [mm] Z(\omega). [/mm] Kennzeichne hierbei jeweils die Punkte für [mm] \omega=0 [/mm] und [mm] \omega [/mm] -> [mm] \infty. [/mm] Für welchen Wert von [mm] \omega, [/mm] ist der Imaginär-Teil der Impedanz minimal? Welchen Wert hat die Impedanz an dieser Stelle? |
Ich wollte zunächst [mm] Z(\omega) [/mm] bestimmen.
Deswegen habe ich zunächst mein Y in das Z eingesetzt
[mm] Z=\bruch{1}{\bruch{1}{R}+i \omega C} [/mm]
was mich ja noch nicht vorangebracht hat.
Leider habe ich keine genaue Ahnung wie ich [mm] Z(\omega) [/mm] bestimmen kann.
Könnte mir da vielleicht jemand einen kleinen Tipp geben?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:39 Mo 18.11.2013 | Autor: | leduart |
Doppelpost, warum?
|
|
|
|