www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - Admittanz einer Parallelschalt
Admittanz einer Parallelschalt < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Admittanz einer Parallelschalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 18.11.2013
Autor: Coxy

Aufgabe
Für die Admittanz Y einer Parallelschaltung eines Kondensators und eines Wiederstandes R gilt: [mm] Y=\bruch{1}{R}+i \omega [/mm] C, wobei [mm] \omega [/mm] die Kreisfrequenz [mm] (\omega \ge [/mm] 0) ist. Ferner gilt für die Impedanz Z: [mm] Z=\bruch{1}{Y}. [/mm] Bestimmen Z [mm] (\omega) [/mm] und skizziere sowohl [mm] Y(\omega) [/mm] als auch [mm] Z(\omega). [/mm] Kennzeichne hierbei jeweils die Punkte für [mm] \omega=0 [/mm] und [mm] \omega [/mm] -> [mm] \infty. [/mm] Für welchen Wert von [mm] \omega, [/mm] ist der Imaginär-Teil der Impedanz minimal? Welchen Wert hat die Impedanz an dieser Stelle?


Ich wollte zunächst [mm] Z(\omega) [/mm] bestimmen.
Deswegen habe ich zunächst mein Y in das Z eingesetzt
[mm] Z=\bruch{1}{\bruch{1}{R}+i \omega C} [/mm]
was mich ja noch nicht vorangebracht hat.
Leider habe ich keine genaue Ahnung wie ich [mm] Z(\omega) [/mm] bestimmen kann.
Könnte mir da vielleicht jemand einen kleinen Tipp geben?

        
Bezug
Admittanz einer Parallelschalt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mo 18.11.2013
Autor: leduart

Hallo
um den Imaginärteil von Z zu finden multipliziere mit dem konj komplexen des Nenners.
sollst du nicht vielleicht die Beträge skizzieren, sonst eben Re und Im getrennt.
Gruss leduart

Bezug
                
Bezug
Admittanz einer Parallelschalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 18.11.2013
Autor: Coxy

Also erweitere ich
[mm] Z=\bruch{1}{\bruch{1}{R}+i \omega C} [/mm] um [mm] \bruch{\bruch{1}{R}-i \omega C}{\bruch{1}{R}-i \omega C} [/mm]

dann erhalte ich
[mm] Z=\bruch{\bruch{1}{R}-i \omega C}{\bruch{1}{R^2}+\omega C} [/mm]

Also entspricht der Realteil [mm] \bruch{\bruch{1}{R}}{\bruch{1}{R^2}+ \omega C} [/mm]
und der Imaginärteil entspricht [mm] \bruch{i \omega C}{\bruch{1}{R^2} + \omega C} [/mm]
stimmt das soweit?

Bezug
                        
Bezug
Admittanz einer Parallelschalt: Tipps und Korrekturen
Status: (Antwort) fertig Status 
Datum: 22:08 Mo 18.11.2013
Autor: Loddar

Hallo Coxy!


> Also erweitere ich [mm]Z=\bruch{1}{\bruch{1}{R}+i \omega C}[/mm] um [mm]\bruch{\bruch{1}{R}-i \omega C}{\bruch{1}{R}-i \omega C}[/mm]
>
> dann erhalte ich [mm]Z=\bruch{\bruch{1}{R}-i \omega C}{\bruch{1}{R^2}+\omega C}[/mm]

[ok] Das könnte man nun auch nochmals mit [mm] $r^2$ [/mm] erweitern, um den Doppelbruch loszuwerden.


> Also entspricht der Realteil [mm]\bruch{\bruch{1}{R}}{\bruch{1}{R^2}+ \omega C}[/mm]

[ok]


> und der Imaginärteil entspricht [mm]\bruch{i \omega C}{\bruch{1}{R^2} + \omega C}[/mm]

[notok] Der Imaginärtiel einer komplexen Zahl ist immer eine reelle Zahl.
Also hat hier die imaginäre einheit $i_$ nichts mehr verloren.
Zudem muss das Vorzeichen ein Minus sein.


Gruß
Loddar

Bezug
                                
Bezug
Admittanz einer Parallelschalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mo 18.11.2013
Autor: Coxy

Okay,
also erweitert ist der komplexe Teil dann
[mm] -\bruch{i \omega C R}{\bruch{1}{R}+i \omega C R} [/mm]

Wie kann ich denn Z [mm] \omega [/mm] und Y \ omega zeichnen?
bzw. wie kann ich die Puntek für [mm] \omega [/mm] =0 und [mm] \omega [/mm] = -> [mm] \infty [/mm] einzeichnen?

Bezug
                                        
Bezug
Admittanz einer Parallelschalt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mo 18.11.2013
Autor: Valerie20


> Okay,
> also erweitert ist der komplexe Teil dann
> [mm]-\bruch{i \omega C R}{\bruch{1}{R}+i \omega C R}[/mm]


Nein.
Der Imaginärteil von $ix$ ist x.
i ist einfach die Imaginäre Einheit.
>

> Wie kann ich denn Z [mm]\omega[/mm] und Y \ omega zeichnen?
> bzw. wie kann ich die Puntek für [mm]\omega[/mm] =0 und [mm]\omega[/mm] =
> -> [mm]\infty[/mm] einzeichnen?

Indem du Werte für [mm] $\omega$ [/mm] einsetzet.

Bezug
                                                
Bezug
Admittanz einer Parallelschalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:30 Mo 18.11.2013
Autor: Coxy

Okay ich habe es mal versucht zu berichtigen indem ich den Bruch mit der konjugierten Komplexen Zahl erweitert habe

Also ist der komplexe Teil [mm] -\bruch{i \omega C+(\omega CR)^2}{\bruch{1}{R^2}-\omega CR} [/mm]
und mein imaginärer Teil wäre dann einfach
[mm] -\bruch{\omega C+(\omega CR)^2}{\bruch{1}{R^2}-\omega CR} [/mm]

stimmt das?

Bezug
                                                        
Bezug
Admittanz einer Parallelschalt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mo 18.11.2013
Autor: leduart

Hallo
1. beachte meine Korrekturmitteilung.
b) aber der im. Teil ist nur der, der bei i steht
z=a+ib  Imaginärteil ist b Realteil ist a

woher kommt plötzlich das R bei [mm] \omega*C [/mm]

Gruss leduart

Bezug
                                
Bezug
Admittanz einer Parallelschalt: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 23:21 Mo 18.11.2013
Autor: leduart

Hallo
im Nenner steht [mm] 1/R^2+\omega^2*C^2 [/mm]
nicht [mm] 1/R^2+\omega*C [/mm]
Gruss leduart

Bezug
        
Bezug
Admittanz einer Parallelschalt: Antwort
Status: (Antwort) fertig Status 
Datum: 02:15 Di 19.11.2013
Autor: GvC

Ich glaube, Du bist hier auf dem vollkommen falschen Dampfer. Das mag daran liegen, dass Du wesentliche Teile der Aufgabenstellung oder den sachlichen Zusammenhang mit dem Thema, unter dem diese Aufgabe gestellt ist, nicht richtig gelesen oder erkannt hast.

Jedenfalls deutet die Aufgabenformulierung ganz stark darauf hin, dass Du die Ortskurven für die Admittanz und für die Impedanz in Abhängigkeit von der Kreisfrequenz [mm] \omega [/mm] skizzieren sollst. Und das macht man bei einer Parallelschaltung nun mal so, dass man zunächst die Admittanzortskurve zeichnet (Parallele zur imaginären Achse im Abstand 1/R) und die nach den allgemeinen Inversionsregeln (hier: eine Gerade ergibt invertiert einen Kreis durch Null) invertiert. Die Z-Ortskurve ist also ein Halbkreis durch Null im IV. Quadranten. Sein Mittelpunkt liegt auf der reellen Achse bei R/2. Der Punkt für [mm] \omega=0 [/mm] liegt auf der reellen Achse bei R, der für [mm] \omega=\infty [/mm] im Nullpunkt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]