www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - Aditionstheoreme
Aditionstheoreme < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aditionstheoreme: sinh(x) ²+cosh(x)²=cosh(2x)
Status: (Frage) beantwortet Status 
Datum: 13:26 So 14.05.2017
Autor: MichiB.

Aufgabe
g = 9a²(sinh²(3u)*cos²(2v) + sin²(2v)*cosh²(3u))
 


Hallo zusammen,

ich beschäftige mich in der Klausurvorbereitung schon des längeren mit diesen Aufgabentypen. Und zwar müssten sie sich soweit wie möglich auflösen lassen. 
Meine Ansätze sind :sin(2v)²+ cos(2v)² = 1  ; sinh²(3u) + cosh²(3u) = cosh(6u)

Meine Frage: Ist es möglich durch einfaches ausklammern die beiden Ansätze zu benutzen so dass am Ende
            9a²*cosh(6u) übrigbleibt? Das würde mir weiter helfen.

Ein anderer Ansatz wäre natürlich: cosh²(3u)= 1 - sinh²(3u) und cos²(2v) = 1 - sin²(2v)
zu ersetzen. Dieses hilft mir nicht ganz weiter. Da sich der Rest dann nicht weiter auflösen lässt.

Hat vielleicht jemdand ne Idee. Vielleicht übersehe ich ja auch nur etwas.

Vielen Dank schonmal
und Grüße aus Hannover 

        
Bezug
Aditionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 So 14.05.2017
Autor: Diophant

Hallo,

> g = 9a²(sinh²(3u)*cos²(2v) + sin²(2v)*cosh²(3u))
>  

>

> Hallo zusammen,

>

> ich beschäftige mich in der Klausurvorbereitung schon des
> längeren mit diesen Aufgabentypen. Und zwar müssten sie
> sich soweit wie möglich auflösen lassen. 
> Meine Ansätze sind :sin(2v)²+ cos(2v)² = 1  ;
> sinh²(3u) + cosh²(3u) = cosh(6u)

>

> Meine Frage: Ist es möglich durch einfaches ausklammern
> die beiden Ansätze zu benutzen so dass am Ende
>             9a²*cosh(6u) übrigbleibt? Das würde
> mir weiter helfen.

>

> Ein anderer Ansatz wäre natürlich: cosh²(3u)= 1 -
> sinh²(3u)

Das ist aber falsch! Es ist

[mm] cosh^2(x)=1+sinh^2(x) [/mm]

> und cos²(2v) = 1 - sin²(2v)
> zu ersetzen. Dieses hilft mir nicht ganz weiter. Da sich
> der Rest dann nicht weiter auflösen lässt.

>

> Hat vielleicht jemdand ne Idee. Vielleicht übersehe ich ja
> auch nur etwas.

>

Also ich bekomme mit dem trigonometrischen Pythagoras und seinem hyperbolischen Pendant die Klammer zu

[mm] sinh^2(3u)+sin^2(2v) [/mm] vereinfacht. Ich glaube aber nicht, dass maan den trigonometrischen Anteil da völlig eliminieren kann, da müsste ja sonst irgendwo die imaginäre Einheit auftreten.

Sorry, das war ein Rechenfehler.

EDIT: nein doch nicht. ;-)


Gruß, Diophant

Bezug
                
Bezug
Aditionstheoreme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:31 So 14.05.2017
Autor: MichiB.


Oki, dankeschön.

Ja, auf das Ergebnis bin ich auch gekommen. Dachte nur dass es sich evtl. noch weiter auflösen lässt, da es nur ein sehr kleiner Teil der Gesamaufgabe ist. Muss den Fundamentaltensor bestimmen, LAplace-Operator anwenden und Christoffel-Symbole berechnen. Das wird dementsprechend komplizierter desto größer die Terme sind.

Ich versuche es mal weiter zu berechnen. Falls jemand noch eine andere Idee hat bin ich weiterhin sehr dankbar.

Viele Grüße

Bezug
        
Bezug
Aditionstheoreme: Administration erforderlich!
Status: (Antwort) fertig Status 
Datum: 14:40 So 14.05.2017
Autor: Diophant

Hallo,

[mm] sinh^2(3u)*cos^2(2v)+sin^2(2v)*cosh^2(3u)&=\left(cosh^2(3u)-1\right)*cos^2(2v)+sin^2(2v)*cosh^2(3u) [/mm]
[mm] &=cosh^2(3u)*\left(cos^2(2v)+sin^2(2v)\right)-cos^2(2v) [/mm]
[mm] &=cosh^2(3u)-cos^2(2v) [/mm]
[mm] &=\frac{1}{2}*\left(cosh(6u)-cos(4v)\right) [/mm]


Mehr bekommt mein Mathcad Prime 4.0 auch nicht hin.

@Admins: der Formeleditor spinnt (neben einigen verschmerzbaren Fehlfunktionen): die Vorschau zeigt nur noch die Syntax-Farben an, der Text wird bei 'Ok' nicht in den Beitrag übernommen.

EDIT: Latex funktioniert gerade überhaupt nicht mehr korrekt.

Gruß, Diophant

Bezug
                
Bezug
Aditionstheoreme: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 So 14.05.2017
Autor: MichiB.


Oki, super. Das hilft mir enorm weiter. Ich denke damit müsste ich die Aufgabe berechnen können. Nochmals vielen Dank und noch einen schönen Sonntag.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]