www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Addition von Zufallsvariable
Addition von Zufallsvariable < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition von Zufallsvariable: Beweiskorrektur
Status: (Frage) beantwortet Status 
Datum: 21:55 Sa 05.02.2011
Autor: Vilietha

Hallo zusammen,

In unserem Vorlesungsscript steht:

Sind [mm] X,Y:\Omega\to\IR [/mm] Zufallsvariable, so ist auch X+Y eine Zufallsvariable.
Beweis: {X+Y>a}, a [mm] \in \IR, [/mm] kann als Vereinigung der {X > p} [mm] \cup [/mm] {Y > q} geschrieben werden, wo p,q die rationalen Zahlen mit p+q>a durchlaufen.

Aber dies kann doch nicht stimmen, oder?
Meiner Meinung nach müsste jeweils ein Schnitt anstatt einer Vereinigung zwischen den beiden Mengen gebildet werden. Also {X+Y>a} = [mm] \bigcup_{p,q\in \IQ, p+q>a}^{} [/mm] {X > p} [mm] \cap [/mm] {Y > q}

Liege ich damit richtig?

Viele Grüße,
Vilietha

        
Bezug
Addition von Zufallsvariable: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 Sa 05.02.2011
Autor: Gonozal_IX

Huhu,

> Liege ich damit richtig?

ja, kannst du dir ja auch recht schnell selbst überlegen, dass bei einer Vereinigung es Elemente gäbe, die zwar in der einen, aber nicht in der anderen Menge liegen würden.

MFG,
Gono.

Bezug
                
Bezug
Addition von Zufallsvariable: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:39 Di 08.02.2011
Autor: Vilietha

Hallo Gono,

Vielen Dank für deine Antwort. :-)

Genau dies hatte ich mir auch überlegt...
Da unser Prof aber eine Liste mit Fehlern des Vorlesungsscript führt (online), und dieser Beweis bereits korriergiert wurde, aber das Vereinigungszeichen noch immer falsch ist, habe ich nun doch noch einmal nachgefragt.

Viele Grüße,
Vilietha


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]