www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ackermannfunktion
Ackermannfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ackermannfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Do 29.03.2012
Autor: bandchef

Hi Leute!

Ich soll die Ackermannfunktion untersuchen. Ich bin dabei (natürlich) auf den Wiki-Artikel dazu gestoßen, aber ich kapier das irgendwie nicht.

Wie berechnet sich denn nun diese Funktion?

Könnt ihr mir da helfen?

Ich hab das so verstanden (so steht's im Wiki-Artikel:


[mm] $\alpha(a,b) [/mm] = a+b, b [mm] \cdot [/mm] b, [mm] a^b,...$ [/mm] Woher soll ich nun wissen, wie's bei den Punkten weitergeht? Was kommt da dann noch? Wann hört die Folge auf? In Wiki steht, dass bierbei bei jedem Folgeglied die Operation des vorigen Folgeglieds (b-1)-mal auf a angewandt wird. Was versteht man da drunter?

[mm] $\alpha(2,4) [/mm] = 2+4, 2 [mm] \cdot [/mm] 4, [mm] 2^4,...$ [/mm] Wie geht's da jetzt weiter?

        
Bezug
Ackermannfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Do 29.03.2012
Autor: Harris

Hi!

Das was du oben geschrieben hast mit dem $a+b, [mm] a\cdot b,a^b$ [/mm] ist nur die Idee, die dahinter steht...

Schau etwas weiter nach unten, dort steht die Definition und die Berechnungsvorschrift.

Du siehst, es sind drei Fälle, wobei zwei Fälle zu einem Ergebnis führen. Und dies genau dann, wenn eins der vorderen Argumente null ist.

Ist keins der Argumente null, so ist die dritte Berechnungsvorschrift relevant. Hierdurch wird das zweite Argument mit der Ackermannfunktion selbst gefüllt, jedoch mit einer kleinen Veränderung.


Bsp:

a(3,2,1)
=a(3,a(3,1,1),0) (dritte Regel)
=a(3,a(3,a(3,0,1),0),0) (dritte Regel)
=a(3,a(3,1,0),0) (zweite Regel)
=a(3,4,0) (erste Regel)
=7

Das interessante ist nur, dass das ganze terminiert (basierend auf 3. Regel) und dass es relativ komplex wird. Im Beispiel hatten wir drei geschachtelte Ackermannfunktionen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]