www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abstand zweier Ebenen
Abstand zweier Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand zweier Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 27.11.2005
Autor: newangel

Hallo Leute,
kann mir einer die Schritt nennen,wie ich zum Abstand zweier Ebenen komme?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Abstand zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:13 So 27.11.2005
Autor: Fugre

Hallo NewAngel,

es gibt nur einen Fall, in dem sich zwei Ebenen nicht schneiden und
der tritt ein, wenn sie parallel sind. Sind die Ebenen parallel, so hat
jeder Punkt der einen Ebene den gleichen Abstand zur anderen Ebene.
Daraus folgt, dass du für den Fall der Parallelität einen beliebigen Punkt
der einen Ebene wählen kannst und dessen Abstand zur anderen Ebene
berechnest. Dieser Abstand entspricht auch dem Abstand der Ebenen.

Liebe Grüße
Nicolas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]